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Abstract

In this paper we present the Dynamic Grow-Shrink

Inference-based Markov network learning algorithm (abbre-

viated DGSIMN), which improves on GSIMN, the state-of-

the-art algorithm for learning the structure of the Markov

network of a domain from independence tests on data.

DGSIMN, like other independence-based algorithms, works

by conducting a series of statistical conditional independence

tests toward the goal of restricting the number of possible

structures to one, thus inferring that structure as the only

possibly correct one. During this process, DGSIMN, like the

GSIMN algorithm, uses the axioms that govern the proba-

bilistic independence relation to avoid unnecessary tests i.e.,

tests that can be inferred from the results of known ones.

This results in both efficiency and reliability advantages over

the simple application of statistical tests. However, one

weakness of GSIMN is its rigid and heuristic ordering of

the execution of tests, which results in potentially inefficient

execution. DGSIMN instead uses a principled strategy, dy-

namically selecting the locally optimal test that is expected

to increase the state of our knowledge about the structure

the most. This is done by calculating the expected num-

ber of independence facts that will become known (through

inference) after executing a particular test (before it is ac-

tually evaluated on data), and by selecting the one that is

expected to maximize the number of such inferences, thus

avoiding their potentially expensive evaluation on data. As

we demonstrate in our experiments, this results in an overall

decrease in the computational requirements of the algorithm,

sometimes dramatically, due to the decreased the number of

tests required to be evaluated on data. Experiments show

that DGSIMN yields savings of up to 88% on both sam-

pled and benchmark data while achieving similar or better

accuracy in most cases.

1 Introduction

Over the last few decades, with the increase in compu-
tational processing power and disk storage size and the
decrease in the cost of gathering data, it has become
significantly cheaper and easier to generate enormous
amounts of data. To extract meaningful and useful in-

formation from this data, a number of data mining al-
gorithms are being developed. Frequently in these al-
gorithms, the task of using existing data to extract in-
teresting relationships or help in predicting future out-
comes can be made significantly easier by estimating the
joint probability distribution of the domain. The prob-
ability distribution of a discrete domain can be repre-
sented in a number of ways. The simplest of these is to
explicitly represent it as a table containing one entry for
the probability of each possible joint value combination
of the set of variables of the domain. Unfortunately, the
size of this table grows exponentially with the number
of random variables e.g., it would require of the order
of 2100 entries for a domain with one hundred binary
variables. Frequently however this is not necessary due
to numerous independences that may exist among the
variables in the domain. A better alternative that makes
use of this type of information is the use of a graphical
model (a Bayesian or Markov network) to succinctly
store the joint probability distribution. Additionally,
graphical models have the advantage of clear semantics,
intuitive visualization of salient domain dependencies,
and are based on a sound and widely accepted theoret-
ical foundation (probability theory).

Figure 1: An example Markov network with nodes
representing the variables in the domain V =
{1, 2, 3, 4, 5, 6}.

In this work we focus on the problem of learn-
ing Markov networks from data. Markov networks are
graphical models that consist of an undirected graph
whose nodes represent the random variables of the do-
main (the model structure), and a set of numeric pa-

680

D
ow

nl
oa

de
d 

10
/2

8/
15

 to
 1

90
.1

2.
16

4.
15

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



rameters. Together, the graph and the parameters can
be used to represent the joint probability distribution of
the random variables of the domain. The structure of
an example Markov network is shown in Figure 1. The
structure graphically encodes conditional probability in-
dependences that exist in the domain. In particular, an
edge is missing between two nodes if and only if the
corresponding random variables are conditionally inde-
pendent given a set containing some of the remaining
variables. Conditional independence among variables
in a Markov network can be shown to be equivalent to
vertex separation among the corresponding nodes in the
graph [19]. For example in Fig. 1, variable 1 is condi-
tionally independent of 5 given the value of variables 3
and 4. To learn a Markov network, the process consists
of first learning the structure, and, given the structure,
subsequently learning the parameters. In this work we
concentrate on the problem of learning the structure of
a Markov network, and present the DGSIMN algo-
rithm (Dynamic Grow-Shrink Inference-based Markov
Network structure learning algorithm) that is able to
learn the structure using the outcomes of statistical con-
ditional independence tests.

The rest of the paper is organized as follows: In
the next section we review previous work related to
topics in the present paper, followed by an introduction
in Section 3 of some of the notation and definitions
that we will use. Our main contribution, the DGSIMN
algorithm, is presented in Section 4 and experimentally
evaluated in Section 5. We conclude with a summary in
Section 6.

2 Related Work

Markov networks have been used in numerous applica-
tions. In the past they have been used in the physics
and computer vision communities [13, 6, 3] where they
have been historically called Markov random fields. In
recent years, Markov networks have also been applied
to spatial statistics, with potential applications in trans-
portation, environmental sciences, meteorology, agron-
omy and others [21], as well as various research problems
including analysis of gene expression pathways [12] and
computer vision [11], among others. The problem with
applying such models however is the fact that, except
in rare situations, the true structure of the underlying
Markov network is usually unknown. In most of these
applications the structure of the network is provided
by an expert, usually derived by connecting each node
with its physically or conceptually nearest neighbors (as
measured by either Euclidean or some other abstract
distance). A solution to this problem is to learn the
structure from data [14, 8] which, besides being the-
oretically interesting in itself, also holds the potential

of advancing the state-of-the-art in application domains
where such models are used.

A number of algorithms for learning Markov
network structure have appeared in the literature.
Two common categories are score-based [9, 18] and
independence-based or constraint-based [22, 7] algo-
rithms. Score-based algorithms perform a search over
the space of all undirected graphs in an attempt to find
the graph with maximum score. As the space of all
graphs has size super-exponential in the domain size i.e.,
2n(n−1)/2 for a domain that contains n variables, these
algorithms frequently must resort to heuristic search.
Scores that have been used include maximum likelihood,
minimum description length, and pseudo-likelihood [5].
However, evaluation of these scores usually requires
the computation of the parameters for each candidate
structure, a task that has been proved to be NP-hard
for undirected models [4]. Therefore, score-based ap-
proaches are theoretically intractable regardless of the
quality of the search heuristics in use. Approaches that
attempt to overcome this intractability include [15] and
[1]. The latter in particular introduces a new class of
efficient algorithms for structure and parameter learn-
ing of factor graphs that subsume Markov and Bayesian
networks. It is a promising and theoretically sound ap-
proach that may lead in the future to practical efficient
algorithms for Markov networks structure learning.

The second category of algorithms are
independence-based. A major advantage of members
of this class is that they do not require computation
of the parameters of the model during the structure
discovery process, and thus are efficient. The main idea
behind these algorithms is to exploit the independence
semantics of the graphs, i.e., the fact that the structure
implies that a set of statistical independences exist in
the distribution of the domain, and therefore in the
data set provided as input to the algorithm (under
assumptions, see below). They work by conducting
a set of conditional independence tests on data, suc-
cessively restricting the number of possible structures
consistent with the results of those tests to a singleton
(if possible), and inferring that structure as the only
possible one.

Our main contribution is the DGSIMN algorithm
which belongs to the latter class (independence-based).
To learn the structure, DGSIMN learns the set of direct
neighbors of each variable in the domain (also called
the Markov blanket of the variable), which collectively
uniquely determine the structure of the undirected
graph. The Markov blankets are learned using our ex-
tension and generalization of the Grow-Shrink (GS) al-
gorithm by Margaritis and Thrun [17], an independence-
based algorithm originally developed for learning the
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structure of Bayesian networks. The DGSIMN algo-
rithm is also an improvement over the GSIMN algorithm
of Bromberg et al [7]. Both GSIMN and DGSIMN use
Pearl’s theorems on the properties of conditional inde-
pendence relation [19] to infer additional dependencies
and independences from the set of already known ones
resulting from statistical tests and previous inferences,
thus avoiding the execution of these tests on data and
therefore speeding up the structure learning process.
One shortcoming of the GSIMN algorithm however is
the rigid and heuristic ordering in which it performs its
tests, that introduces potential limitations in the num-
ber of tests it can infer. DGSIMN instead greedily and
dynamically selects, at each iteration in the algorithm,
the test that maximizes the expected number of infer-
ences resulting from performing the test on data. This
results in superior performance in most cases, as our
experimental evaluation confirms.

In the next section, we present the notation that will
be used throughout the rest of the paper and describe
related concepts and algorithms.

3 Notation and Preliminaries

In this work we use capital letters to denote random
variables (e.g., X, Y , Z), bold capital letters to repre-
sents sets of random variables (e.g., X, Y, Z), and small
letters to represent values of these variables (e.g. x, y,
z). In particular, we denote by V = {1, · · · , n} the set
of all n variables in the domain. We assume that the
joint probability distribution over V is positive i.e., ev-
ery value combination of the variables in V has some
non-zero probability of occurring.

We use the notation (X⊥⊥Y | Z) or (X,Y,Z) =
true to denote the fact that X is independent of Y
conditioned on Z and (X6⊥⊥Y | Z) or (X,Y,Z) = false

to denote that X is dependent on Y conditional on Z.
Slightly abusing notation, we use the shortcut X instead
of {X} e.g., (X⊥⊥Y | Z) instead of ({X}⊥⊥{Y } | Z).
We denote the data set as D, and its size (number of
data points) by N . We use MX to denote the Markov
blanket of variable X. Formally, the Markov blanket
MX of variable X ∈ V is any set of variables S ⊆ V
such that

(X⊥⊥V − S− {X} | S).

The set of all Markov blankets can be used to
construct the Markov network by making use of the
following theorem.

Theorem 3.1. (Pearl and Paz, 1985) The Markov
network of any strictly positive distribution can be con-
structed by connecting each variable X to all members
of its Markov blanket MX .

Table 1: Markov blanket corresponding to variables in
Figure 1.

Variable Markov blanket

1 2, 4

2 1, 3, 4

3 2, 5

4 1, 2, 5

5 3, 4

To illustrate, Table 1 shows the Markov blanket (di-
rect neighbors) of each variable in the Markov network
depicted in Fig. 1.

In this work we also assume the underlying proba-
bility distribution of the domain to be graph-isomorph
[19]. A distribution is graph-isomorph if and only if it
has a faithful graph G, that is, if G’s connectivity rep-
resents exactly those dependencies and independences
that hold true in the distribution. As Pearl et al [19]
showed, a necessary and sufficient condition for a dis-
tribution to be graph-isomorph is for its set of indepen-
dences to satisfy the properties in Eqs. (3.1), displayed
framed on the following page. These properties are uni-
versally quantified over all sets of variables X, Y, Z,
W and single variable γ, and can thus be used as infer-
ence rules to infer unseen independences from the ones
that are known. This observation is exploited by the
DGSIMN algorithm, presented in the next section.

For the operation of the algorithm we also assume
the existence of an ideal oracle that can always answer
statistical independence queries (e.g., by directly query-
ing the underlying probability distribution). A practi-
cal implementation (approximation) of such an oracle is
discussed in Section 3.1 below.

Graph-isomorphism, strict positivity, and existence
of an oracle (i.e., reliable tests) are standard assump-
tions necessary to assure uniqueness, i.e., that there
exists a single structure consistent with the tests per-
formed, and correctness, i.e., that the algorithm outputs
this unique structure [19].

Based on Pearl’s properties, Bromberg et al intro-
duced in [7] a simplified set of properties, called the
Triangle rules due to their graphical interpretation (not
shown in this paper). The correctness of these rules fol-
lows from Eqs. (3.1) as the following theorem shows.

Theorem 3.2. (Triangle Theorem) Given
Eqs. (3.1), for every variable X, Y , W and the sets Z1

and Z2 such that {X,Y,W}∩Z1 = {X,Y,W}∩Z2 = ∅,

(X 6⊥⊥W | Z1) ∧ (W 6⊥⊥Y | Z2) =⇒ (X 6⊥⊥Y | Z1 ∩ Z2)

(X⊥⊥W | Z1) ∧ (W 6⊥⊥Y | Z1 ∪ Z2) =⇒ (X⊥⊥Y | Z1).

As shown in [7], this simplified set of rules al-
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Symmetry

Composition/

Decomposition

Intersection

Strong Union

Transitivity

(X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)

(X⊥⊥Y ∪W | Z) ⇐⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(X⊥⊥Y | Z ∪W) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

(X⊥⊥Y | Z) =⇒ (X⊥⊥Y | Z ∪W)

(X⊥⊥Y | Z) =⇒ (X⊥⊥ γ | Z) ∨ (γ⊥⊥Y | Z)

(3.1)

lows a considerable improvement in speed compared
to a full-blown inference procedure using the axioms
of Eqs. (3.1), while still inferring most of the useful
independence relations that can be inferred by apply-
ing the complete set. Our DGSIMN algorithm uses a
combination of these Triangle rules and the property of
Strong Union for inferring new independence relations
from known ones.

3.1 Independence Oracle Implementation. As
mentioned above, DGSIMN belongs to the category of
independence-based algorithms for learning the struc-
ture of a Markov network. These algorithms work by
evaluating a number of conditional independence tests.
To show theoretical correctness, one must assume the
existence of an independence-query oracle that can pro-
vide the true value of any conditional independence.
In practice however, such an independence-query ora-
cle does not exist; instead it can be approximated by a
statistical independence test evaluated on data. Many
such tests of independence have been introduced in the
statistical literature during the last century or so e.g.,
Pearson’s χ2 conditional independence test [2], a mu-
tual information test, etc. All algorithms in this work
use Pearson’s χ2 square test, which is simple and easy to
compute. To test if variable X is independent of vari-
able Y conditioned on variable Z, the χ2 conditional
independence test computes the probability of making
an error if we assume that the two variables are de-
pendent given the data when in fact they are indepen-
dent, a quantity known as the p-value of the test. A
large p-value implies a large probability of incorrectly
claiming dependence, and thus independence must fol-
low. In practice, the test compares the p-value to a
confidence threshold 1−α, with α commonly taking the
value α = 0.05. More precisely, denoting the p-value by
G(X,Y | Z),

(X⊥⊥Y | Z)⇐⇒ G(X,Y | Z) ≥ 1− α.

In our algorithm we represent the result of an indepen-
dence test as the result of Boolean function I(X,Y,Z),
defined as

(3.2) I(X,Y,Z) = true if and only if (X⊥⊥Y | Z).

As a statistical test conceptually constructs a con-
tingency table of counts, one for each combination of
values of the variables involved in the test, a naive im-
plementation of such a test would have a cost expo-
nential in the number of variables involved. However,
empty cells (containing zero counts) in the contingency
table do not really need to be explicitly represented. A
more efficient representation of the contingency table
therefore is possible—for example, using a sparse repre-
sentation that does not explicitly store zero counts, pos-
sibly implemented using a hash table—that only needs
to examine each data point once, incrementing the ap-
propriate count of the contingency table. Using such an
implementation, the time complexity of a statistical test
is proportional to the size of data set N and the number
of variables involved. For example, a conditional test
between variables 1 and 2 given {4, 5} has time com-
plexity proportional to 4N . Therefore, in all our time
complexity results, we report the weighted number of
tests (and not simply the number of tests conducted),
referred to as weighted cost hereon, with each test con-
ducted weighted by the number of variables involved in
it. This is a more accurate measure of the actual time
that the algorithm will take to execute.

Algorithm 1 GS(X,V)

1: M← ∅

2: /* Grow Phase. */
3: while ∃Y ∈ V − {X} such that (X 6⊥⊥Y |M) do
4: M←M ∪ {Y }
5: /* Shrink Phase. */
6: while ∃Y ∈M such that (X⊥⊥Y |M− {Y }) do
7: M←M− {Y }
8: return M

3.2 The Grow-Shrink Algorithm. As mentioned
above, the general approach of the DGSIMN algorithm
is to learn the structure by learning the Markov blanket
of each variable in the domain. The Markov blanket
MX of variable X ∈ V is learned by an extension of
the Grow-Shrink (GS) algorithm [17]. (The extension
is described in the next section.) In the following,
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through the operation of the GS algorithm, we define
and illustrate some constructs that we will use later in
the description of our DGSIMN algorithm.

The GS algorithm, shown in Alg. 1, consists of two
phases: The grow phase (lines 3–4) and the shrink phase
(lines 6–7). The grow phase proceeds by attempting
to add variables to the current set of hypothesized
members of the Markov blanket of variable X, contained
in M. The set M starts empty and is iteratively grown
by some variable Y if and only if Y is found dependent
of X when conditioned on the current hypothesized
Markov blanket M. Note here that the GS algorithm
does not require the use of any specific ordering that the
variables are examined for inclusion in the grow phase
or exclusion in the shrink phase—any such ordering
will produce the correct Markov blanket MX . Due to
arbitrariness of the order that variables are examined
in the grow loop of the GS algorithm, by the end of
the grow phase M may contain variables that are not
in the true Markov blanket. This justifies the shrink
phase, which removes each false member Y from M if
and only if Y is conditionally independent of X given
M− {Y }. This is because if Y is found independent of
X it cannot possibly be in its Markov blanket (as there
cannot be an edge between X and Y ), and GS therefore
removes it from M.

One can represent the state of the algorithm during
its execution using two lists of variables for each vari-
able X: DX and IX . At each point of the algorithm,
DX contains the variables found dependent of X (listed
in order) during the grow phase and thus added to the
set M (line 4) and not removed from M during the
shrink phase. IX contains the list of variables found in-
dependent of X (again in order) and thus not added to
M during the grow phase, or added but later removed
from M during the shrink phase (line 7).

Let us illustrate these two lists by an example.

Example 1. Let us examine the execution of the algo-
rithm on the example Markov network of Fig. 1. Let
X = 1 and suppose that the order that variables are
examined during the grow phase is [2, 5, 3, 4]. The GS
algorithm has no knowledge of the underlying struc-
ture, but instead conducts a number of independence test
queries. In this case, the results of the sequence of these
tests during the grow phase are

(16⊥⊥2 | ∅)

(16⊥⊥5 | {2})

(1⊥⊥ 3 | {2, 5}).

After these tests, the values of D1 and I1 are D1 = [2, 5]
and I1 = [3]. The lists D1 and I1 can be represented

graphically as two columns growing in opposite direc-
tions, as shown in Fig. 2(a). In this figure, DX is
shown consisting of white squares (each corresponding
to a variable) and growing downwards while IX consists
of dark squares and grows upwards.

(a) After tests (1 6⊥⊥2 |

∅), (16⊥⊥5 | {2}) and

(1⊥⊥ 3 | {2, 5}).

(b) After the additional

test (16⊥⊥4 | {2, 5}).

Figure 2: Graphical representation of the grow phase
state (D1, I1) of variable 1, corresponding to Example 1.
The dependence column D1 is shown in white and the
independence column I1 in black.

Let us now assume that an additional test is eval-
uated. According to the GS algorithm, this test is
(1, 4, {2, 5}), which evaluates to false, indicating de-
pendence. In this case D1 will be extended by variable
4, resulting in the state shown in Fig. 2(b).

We see that during the operation of the GS algo-
rithm, each successive test is of the form (X,Y | DX).
Note that IX does not affect future tests directly, but
indirectly it is used to remember which tests are un-
necessary. At each stage of the algorithm, we can then
define the set of tests that can be used to extend a col-
umn. We call this set the fringe of X, and it depends on
the value of DX . The fringe of X is denoted by F (DX)
and is defined as

F (DX) =
{

test (X,Y | DX) | Y 6= X and Y 6∈ DX

}

.

In the example of Fig. 2(a), the fringe is F1 =
{(1, 4, {2, 5})}.

4 The DGSIMN Algorithm

In this section we present our main contribution, the
DGSIMN algorithm (Dynamic Grow-Shrink Inference-
based Markov Network learning algorithm). We first
extend and generalize the GS algorithm in a way that
makes it more flexible in the choice of tests that it is
allowed to do during its growing phase. Following that,
we describe the DGSIMN algorithm, which uses this
extended GS algorithm but also introduces the dynamic
selection of the best next test to perform with respect
to its expected future cost.
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4.1 A Generalization of the GS Algorithm. We
now show that the GS algorithm can be extended to
exploit an independence test coming from an external
source, even if this test cannot be used to extend a
column. (As we will see in the next section, the source
of these test results will be a process of inference using
the axioms of Eqs. (3.1).)

Suppose that a new test result (X 6⊥⊥Y | S) becomes
available to the algorithm during the grow phase of X,
with S 6= DX . If S ⊇ DX , then (X 6⊥⊥Y | DX) follows
by Strong Union and we can therefore extend the DX

column with Y . If S 6⊇ DX the test cannot be used
by the GS algorithm. However, our key idea here is
that one can actually exploit this test is by considering
it as a step in an alternative grow phase. This is
possible because the GS algorithm does not require any
particular ordering for the grow phase (it returns the
correct Markov blanket for any order), and thus more
than one alternative ones may exist simultaneously. To
represent the state of the algorithm we now must be able
to maintain more than one dependence list DX , one for
each alternative. We denote the set of dependence lists
of variable X by DX .

Let us clarify this idea through an example.

Example 2. Let us revisit the situation described in
Example 1(a), reproduced here for convenience in
Fig. 3(a). In this example the state for variable 1 con-
sists of a single column i.e., D1 = {[2, 5]}, I1 = [3].
Suppose now that we learn that (16⊥⊥4 | 6). Since
{6} 6⊇ D1, this test cannot be used to grow the existing
dependence column. However, through Strong Union,
we can infer that (16⊥⊥4 | ∅). This new fact can be con-
sidered as the beginning of a new (alternative) growing
phase, and we can therefore create a new column [4],
i.e., D1 = {[2, 5], [4]}. The new state of variable X is
shown in Fig. 3(b).

(a) After tests (1 6⊥⊥2 |

∅), (16⊥⊥5 | {2}) and

(1⊥⊥ 3 | {2, 5}).

(b) After the additional

test (16⊥⊥4 | 6).

Figure 3: Graphical representation of the grow phase
state (D1, I1) of variable 1, corresponding to Example 2.

The benefit of maintaining several columns is that
some columns may complete the grow phase before

others. More precisely, if D⋆
X is the longest column

in DX , the grow phase terminates if and only if D⋆
X ∪

IX = V − {X}. Completing the grow phase allows the
GS algorithm to proceed to the shrink phase sooner,
speeding up the learning of the Markov blanket of X.

The extension to multiple columns requires a gen-
eralization of the concept of fringe, since now there may
exist more than one tests that may be useful to eval-
uate, i.e., one for each column. The new fringe of X,
denoted FX , is now defined for a set of columns DX as
(4.3)

FX =

{

∅ if D⋆
X ∪ IX = V − {X}

⋃

DX∈DX
F (DX) otherwise.

Algorithm 2 updateColumns((X,Y,S), t)

1: if t = false then
2: if ∃D ∈ DX such that S ⊇ D then
3: D ← concatenate(D,Y )
4: else
5: DX ← DX ∪ {[Y ]}
6: Update the fringe FX of X using Eq. (4.3).
7: else
8: IX ← concatenate(IX , Y )
9: for each D ∈ DX do

10: remove Y from D

Alg. 2 summarizes these ideas, showing precisely
how DX , IX and FX are updated after test (X,Y | S)
evaluates to t, where t ∈ {true, false}. Given as input
(X,Y,S) and t, the updateColumns procedure tries to
advance the grow phase of the GS algorithm of variable
X one step. If t = false (dependence) and there exists
some element D ∈ DX for which S ⊇ D, it extends D
by appending Y to its end; otherwise it creates a new
column containing only Y i.e., [Y ] is added to DX . If
t = true (independence) then Y is appended to IX and
removed from every column that contains it.

4.2 DGSIMN Algorithm Description. We are
now ready to describe the DGSIMN algorithm, shown
in Alg. 3. It takes as input a data set D and a
set of random variables V, and outputs an undirected
graph G, with set of nodes V and set of edges E, that
best represents the underlying Markov network. The
algorithm consists on three phases: initialization, main
loop, and construction of the output network.

The algorithm maintains a propositional knowledge
base K that contains the independence and dependence
propositions that have either been evaluated on data
or inferred (see below). During the initialization phase
(lines 1–6), the algorithm creates K initially empty.
It also initializes the set of dependence columns for
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Algorithm 3 DGSIMN(V,D)

1: /* Initialization. */
2: K ← ∅

3: for all X ∈ V do
4: DX ← {∅}
5: IX ← ∅

6: MX ← nil
7:

8: /* Main loop. */
9: while F 6= ∅ do

10: /* Select test with maximum utility (cf. §4.3). */
11: (X,Y,S)← arg max

T∈F
U(T )

12: /* Do the test. */
13: t← I(X,Y,S)
14: applyTest((X,Y,S), t)
15:

16: /* Shrink complete columns not yet shrunk. */
17: for each Z ∈ V s.t. FZ = ∅ and MZ = nil do
18: /* Shrink longest column D⋆

Z . */
19: for each W ∈ D⋆

Z do
20: if I(Z,W,D⋆

Z − {W}) = true then
21: applyTest((Z,W,D⋆

Z − {W}), true)
22: MZ ← D⋆

Z

23:

24: /* Construct and return the output network. */
25: E← ∅

26: for all X ∈ V do
27: for all Y ∈MX do
28: E← E ∪ {(X,Y )}
29: G← graph with nodes V and set of edges E
30: return G

each variable to a single empty column and sets its
independence column to be empty. Finally, it initializes
its Markov blanket to the special value nil (indicating
that its Markov blanket has not been created yet).

The Markov blanket of each variable in V is learned
in the main loop (lines 9–22) by a simultaneous appli-
cation of the generalized GS algorithm that maintains
multiple columns (see Section 4.1 above). An important
component of the algorithm is the method that it em-
ploys to select the next test to perform: the next test
is chosen dynamically during each iteration of the main
loop, selected greedily from the pool of useful tests con-
tained in the global fringe F (or simply fringe). The
fringe is defined as

F =
⋃

X∈V

FX .

The algorithm selects the test in F that is expected
to produce the largest number of useful inferences i.e.,
those that can be used to extend one or more columns.

Whether a test is useful or not—or, more precisely,
how useful it is—is computed using a utility function,
discussed in detail in Section 4.3 below.

Algorithm 4 applyTest((X,Y,S), t)

1: updateColumns((X,Y,S), t)
2: updateColumns((Y,X,S), t) /* For symmetry. */
3: /* Do inference using new test. */
4: K ← run forward chaining on K ∪ {(X,Y,S) = t}
5: for every newly inferred test t′ = (X ′, Y ′,S′) do
6: updateColumns((X ′, Y ′,S′), t′)
7: updateColumns((Y ′, X ′,S′), t′)

The optimal test T ⋆ = (X,Y,S) selected is then
performed on data using the boolean function I (cf.
Eq. (3.2)). Its outcome (true or false) is then
applied to the state of the algorithm using the applyTest
procedure of Alg. 4, an operation that consists of
three steps: First, the new test is used to update the
columns of X and Y using Alg. 2, as explained in
detail in the previous section. Second, T ⋆ is added to
a knowledge base K of independence and dependence
propositions maintained throughout the algorithm and
a forward-chaining inference procedure1 [20] is applied
on K ∪ {T ⋆}, updating it to contain all conducted and
inferred independences inferable using the Triangle rules
(cf. Theorem 3.2). Finally, each of the newly inferred
tests (X ′, Y ′,S′) is used to update the columns of X ′

and Y ′ using Alg. 2.
After applying the optimal test T ⋆, the column of

one or more variables may have been completed, and
thus that variable may proceed to its shrink phase.
Let denote by Z such a variable (if any) and D∗

Z its
longest (completed) column. The algorithm detects
if a column of variable Z is complete by checking
if its fringe is empty i.e., FZ = ∅ (see Eq. (4.3)).
However, some variables may have already completed
its shrinking phase and thus also have an empty fringe.
To avoid attempting to execute the shrinking phase for
these variables again, the algorithm confirms that its
Markov blanket MZ has not been initialized i.e., checks
that MZ = nil . As in the growing phase, every test
performed on data during the shrink phase (line 20) is
applied to the global state using Alg. 4 (line 21). The
shrink phase of a variable Z terminates by setting its

1The forward-chaining procedure is a standard inference algo-

rithm that computes the closure of a set of facts and if-then rules.

It works by iteratively applying each rule, instantiated to every
possible antecedent formed by the current facts in the knowledge

base, and adding each inferred new fact back into the knowledge

base. This procedure repeats until all newly inferred facts are

already contained in the knowledge base.
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Markov blanket MZ to D⋆
Z , which contains at this point

exactly those variables in the Markov blanket.
The main loop proceeds until the grow and shrink

phases of all variables has been completed, a condition
satisfied when the fringe of every variable is empty. At
this point, the Markov blanket of all variables has been
learned. The algorithm concludes with the construction
of the output network G. This proceeds by connecting
each variable to all the variables in its Markov blanket
(lines 25–29), as indicated by Theorem 3.1.

4.3 Utility Function. The dynamic aspect of the
DGSIMN algorithm refers to its ability to choose the
next test to evaluate on the fly. As mentioned above,
this test is selected greedily from the fringe of all
variables and consists of the test that has the maximum
expected utility. Intuitively, the best choice of test to
execute next is the one that will move the state of
the algorithm closer to termination. The utility of the
test with respect to a column is therefore proportional
to the (negative of its) distance to termination i.e.,
the negative of its cost, as measured by the weighted
number of tests required to complete the column. Its
utility with respect to a variable is the negative of the
cost required to complete exactly one column of that
variable.

Unfortunately, exact calculation of this utility
(cost) is impossible in the general case, as that would
require prior knowledge of the result of future tests. In-
stead we calculate the expected cost of each column.
(This is consistent with the principle of selecting an ac-
tion of maximum expected utility, a standard approach
in decision theory for domains that contain uncertainty
[20].) To calculate the expected cost of tests remaining
for the grow phase of a column of a variable we need
to average over all possible events, weighing each by
its probability of occurrence. Lacking prior knowledge
of the results of future tests, we use the principle of
indifference according to which, in the absence of any
information, the events considered (i.e., the next test
outcome being true or false, corresponding to inde-
pendence or dependence respectively) are equiprobable.
For a given variable X, we estimate that the expected
number of tests required to terminate its grow phase to
be the expected number of tests required to terminate
the longest column D⋆

X . Even though such an estimate
is a heuristic, it has proved to work well in our experi-
ments, which are presented in the next section.

Let (DX , IX) be the state of a column of some
variable X still in its grow phase during the execution
of the algorithm, with DX and IX its dependence and
independence lists respectively, and let d = |DX | and
i = |IX |. Then that column is m = n− (d + i + 1) tests

away from completion of its grow phase, where n = |V|,
because this is the number of variables remaining to be
examined for inclusion to either DX or IX (depending
on the result of the corresponding test). Using the
principle of indifference mentioned above, the expected
weighted cost f(d, i) of the remaining tests required to
complete column (DX , IX) is

(4.4) f(d, i) =
1

2m

∑

s∈{true,false}m

w(s),

where {true, false}m denotes the set of all sequences
of of length m containing the values true or false, and
w(s) denotes the cost of test sequence s, which can be
regarded as a binary vector of length m.

Note that even though the calculation of the value of
f(d, i) appears to require exponential time in m, that is
not true—it can computed in closed form recursively as
follows: Each test (X,Y | DX) that returns dependence
grows the DX column, thus determining (enlarging by
one) the conditioning set of subsequent tests during the
grow phase, while independence results grow the IX

column which does not affect their conditioning set (and
therefore their cost). This logic allows the calculation
of f(d, i) as the solution of the following recurrence:

f(d, i) =
{

d + 2 if d + i + 2 = n
1
2f(d + 1, i) + 1

2f(d, i + 1) otherwise.

The first case of the recurrence corresponds to the
base case where there is only one variable remaining
to be tested in the growing phase. The second case
corresponds to the general situation and is the average
of two alternatives for the outcome of the next test to be
done: if the next test returns dependence (with assumed
probability 1/2), then DX will be enlarged by Y and
the expected cost of subsequent tests will be f(d+1, i);
otherwise Y will be added to IX and the expected cost
of subsequent tests will be f(d, i + 1). The solution to
the recurrence is

f(d, i) = d + 2 +
n− (d + i + 2)

2
.

Finally, the total distance of the algorithm from termi-
nation is the sum of the distances for each variable in
the domain:

f =
∑

X∈V

f(|D⋆
X |, |IX |)

where D∗
X is X’s longest column.

We can now define the utility U(T ) of some test
T to be done (i.e., T = T ∗) as the average distance
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to the goal of the resulting state of the algorithm (the
states of DX and IX of every variable X in the domain
after updating the knowledge base with the new test
result, conducting forward chaining, and updating the
columns accordingly using Alg. 4) if its value on data
is true, denoted by fT=true or the state if its value is
false, denoted by fT=false. The utility of test T is then

U(T ) = −
fT=true + fT=false

2
.

4.4 Correctness of DGSIMN. As proved in [16],
the GS algorithm correctly recovers the Markov blanket
of a variable for an arbitrary ordering of examination of
the variables during the grow phase.

Theorem 4.1. ([16]) Assuming Contraction, Compo-
sition and Decomposition, at the end of the GS algo-
rithm M is a Markov boundary of X.

(A Markov boundary is a minimal Markov blanket.
Also, we do not show Contraction here due to lack of
space but it is guaranteed to hold in every probability
distribution—see [19].) The proof of theoretical cor-
rectness of DGSIMN (under our stated assumptions)
therefore follows directly from the correctness of GS,
as DGSIMN faithfully follows the execution of the GS
algorithm (its grow and shrink phases), albeit being sig-
nificantly more efficient by inferring the results of some
of the tests involved and maintaining several alternative
grow phases in parallel.

5 Experimental Results

We conducted experiments on both artificial and bench-
mark data sets. As we show below, the dynamic selec-
tion of tests of DGSIMN results in a reduction of the
weighted cost required to learn the Markov structure,
without significantly affecting the quality of the output
network in most cases. We report the following quanti-
ties:

• Weighted cost: As explained in section 4.3, the
running time of the algorithm in the limit of very
expensive tests, such as scenarios with large data
sets or distributed data, is proportional to the total
weighted cost of all tests conducted.
• Ratio of correct edges: In cases where the

network used to generate the data is known, we
measured the ratio of correct edges between the
output network and the network of the underlying
model. This is defined as the number of “matching”
edges between the two networks normalized by
n(n − 1)/2, the total number of possible edges.
The matching edges are those edges that are either
present in both networks or absent from both
networks.
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Figure 4: Ratio of the weighted cost DGSIMN over
GSIMN for different network sizes (number of nodes) n
and average degrees τ = 1, 2, 4, and 8. Ratios smaller
than 1 indicate an advantage of DGSIMN over GSIMN.

• Accuracy: For benchmark data the underlying
model is unknown. We thus assess the quality
of the output network by comparing a number of
conditional independences and dependences repre-
sented in the resulting network (using vertex sep-
aration) with those represented in the data (using
statistical independence tests).

5.1 Exact Learning Experiments. Exact struc-
ture learning occurs when the learning algorithm has
access to an oracle that can accurately answer any in-
dependence query. In cases where the structure of the
underlying model is known (called the true network
hereon), we can simulate such an oracle by vertex sep-
aration on the true structure. Exact learning allows
an evaluation of the algorithm under ideal conditions
of reliable tests and graph-isomorphic domains, which
guarantee the correct output, i.e., the output network
matches exactly the true network. We thus report only
the weighted cost in this set of experiments.

Experiments were conducted on randomly gener-
ated true networks of different size (number of nodes)
and average degree per node. Each true network con-
taining n variables was generated randomly as follows:
the network was initialized with n nodes and no edges.
The average degree is determined by a user-specified
parameter τ that equals the average number of direct
neighbors per node. Given τ , edges were selected uni-
formly by selecting the first τ n

2 edges from a random
permutation of the set of all pairs of nodes. The factor
1/2 is needed to account for each edge contributing to
the degree of two nodes.

Figure 4 depicts the ratio of weighted cost of
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DGSIMN over GSIMN for true networks of size up to
50 and average degree τ = 1, 2, 4, 8. We can observe
that for τ = 1, 2, DGSIMN always performs better
than GSIMN in terms of weighted cost. Also, while
for τ = 4, 8, and small n, GSIMN performs better, as
the number of variables increases DGSIMN significantly
outperforms GSIMN—for data sets with 50 variables we
see a savings of 15%–35% in weighted cost.

5.2 Sampled Data Experiments. Experiments in
this section compare the performance of DGSIMN and
GSIMN on data sampled from a known network, using
a Gibbs sampler. Unlike the exact learning experiments
of the previous section, independence queries are now
performed on data using Pearson’s χ2 statistical test.
The utility of this set of experiments is two-fold: First,
they provide a more realistic measure of the behavior
of the algorithms as statistical tests may be unreliable.
Second, this quality can be measured more accurately
through a direct comparison with the true network.

Data sets containing 10,000 data points were
sampled with random networks of sizes n =
4, 8, 12, 20, 30, 50, 75 and average degree of τ = 1, 2, 4, 8,
whose structure was generated randomly using the pro-
cedure described in Section 5.1. Given a structure, to
fully describe a probability distribution we must also
specify its parameters. These parameters determine the
strength of the dependencies among variables connected
in the graph. Agresti [2] proposes the log-odds ratio θXY

as a measure of the strength between two random vari-
ables X and Y , defined as

θXY = log
Pr(X = 0, Y = 0)Pr(X = 1, Y = 1)

Pr(X = 0, Y = 1)Pr(X = 1, Y = 0)
.

The network parameters were generated randomly so
that the log-odds ratio between variables directly con-
nected by an edge has a specific value. In our experi-
ments we used θ = 1 for each of these pairs.

We depict the ratio of the weighted cost and the
ratio of the number of correct edges of DGSIMN versus
GSIMN in Fig. 5 for each τ . Each graph contains
two plots, a histogram representing the difference in
accuracy between DGSIMN and GSIMN and a line
plot showing the ratio of weighted costs. The relative
behavior of the two algorithms in terms of weighted
costs is similar to the case of exact learning. We can see
that overall DGSIMN improves over GSIMN in weighted
cost without sacrificing accuracy by a great amount in
many cases, and actually improving accuracy in most
cases. For less connected networks (τ = 1, 2), DGSIMN
always requires less weighted cost. For τ = 4, 8,
DGSIMN starts outperforming GSIMN as the number
of variables in the domain increases. Most importantly,
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Figure 6: Ratio of the weighted cost of DGSIMN
over GSIMN and difference between the accuracy of
DGSIMN and GSIMN on real data sets. Ratios smaller
that 1 and positive bars indicate an advantage of
DGSIMN over GSIMN. The numbers in the x-axis are
indices of the data sets as shown in Table 2.

DGSIMN has the most impact (improvement) with
large numbers of variables, which is frequently the most
interesting and useful case in which to apply it.

5.3 Benchmark Data Experiments. We also con-
ducted a number of experiments on benchmark data
sets, shown in Table 2, from the UCI machine learning
data repository [10]. Experiments on benchmark data
are useful for providing us a more realistic assessment of
the performance of the algorithm due to the several fac-
tors: the underlying model may not be graph-isomorph,
violating one of our assumptions; the reliability of the
tests may be low due to the usually small data set size;
and the structure of the underlying model may have a
non-random topology.

Since the structure of the underlying network is
unknown for virtually all benchmark data sets, the
output network cannot be compared with the true
one. Instead we measured quality by comparing the
result (true or false) of a number of conditional
independence tests performed on the output network
(using vertex separation) and on the data (using the χ2

test). Ideally we would compare all possible tests, but
this is usually impossible as there exist an exponential
number of them. We thus estimate the accuracy over
a set T composed of 100 randomly sampled triplets
(X,Y,S) per conditioning set size m = |S|, for m ∈
{0, . . . , n−2}. Denoting by Iout(t) ∈ {true, false} the
result of the test performed on the output network for
triplet t ∈ T and by Idata(t) ∈ {true, false} the result
of the test performed on data, the accuracy is defined
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Figure 5: Ratio of weighted cost of DGSIMN over GSIMN (continuous line) and the difference of the ratio
of correct edges of DGSIMN and GSIMN (bar graph) for different number of variables n and average degrees
τ = 1, 2, 4, and 8. Ratios smaller that 1 and positive bars indicate an advantage of DGSIMN over GSIMN.

as

̂accuracy =
1

|T |
{t ∈ T |Iout(t) = Idata(t)} .

Table 2 displays the comparison between DGSIMN
and GSIMN on a set of benchmark data sets and in
Figure 6 we plot the difference in accuracy between
DGSIMN and GSIMN as bar graph and the ratio of
weighted cost for each file in Table 2. From the table and
the graph we can see that DGSIMN clearly improves on
weighted cost for every data set, producing savings of
up to 88%. Results also show that DGSIMN performs
slightly worse in 8 out of 18 cases, similar in 2 cases,
and much better the remaining 8 cases. Overall for
benchmark data sets DGSIMN improves by a great
amount in weighted tests while achieving similar or
better accuracy on average.

6 Conclusion

In this paper we presented the DGSIMN algorithm that
improves on GSIMN, the state-of-the-art algorithm in
the task of learning the structure of the Markov network
of a domain from data using an independence-based

approach. DGSIMN works by conducting a series of
statistical conditional independence tests on the data,
and uses the axioms that govern the independence
relation to avoid unnecessary tests i.e., tests that can
be inferred from the results of known ones. DGSIMN
improves on the GSIMN algorithm by dynamically
selecting the locally optimal test that will increase the
state of knowledge about the structure the most. This
is done by estimating the number of inferences will
be obtained by executing a test before it is done on
data, and selecting the one that is expected to maximize
the number of such inferences. Experiments show that
DGSIMN yields savings of up to 88% on both sampled
and benchmark data while achieving similar or better
accuracy in most cases.
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Table 2: Weighted number of tests and accuracy for several benchmark data sets. For each evaluation measure,
the best performance between DGSIMN and GSIMN is indicated in bold. The number of variables in the domain
is denoted by n and the number of data points in each data set by N .

Data set Weighted cost Accuracy
Index Name n N GSIMN DGSIMN Improvement GSIMN DGSIMN

1 cmc 10 1473 261 203 22.2% 0.693 0.64
2 flare2 13 1400 386 207 46.4% 0.633 0.7

3 bridges 12 70 294 141 52.0% 0.882 0.786
4 hepatitis 20 80 845 399 52.8% 0.934 0.899
5 hayes-roth 6 132 79 37 53.2% 0.7 0.666
6 crx 16 653 685 312 54.5% 0.757 0.758
7 flag 29 194 2482 892 64.1% 0.901 0.879
8 monks-1 7 556 96 32 66.7% 0.823 0.803
9 haberman 5 306 63 20 68.3% 0.407 0.827

10 echocardiogram 14 61 562 170 69.8% 0.467 0.905

11 lenses 5 24 67 20 70.1% 0.502 0.74

12 imports-85 25 193 2912 851 70.8% 0.501 0.774
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