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Abstract

In viticulture, there are several applications where 3D bud detection and

localization in vineyards is a necessary task susceptible to automation: mea-

surement of sunlight exposure, autonomous pruning, bud counting, type-of-bud

classification, bud geometric characterization, internode length, and bud de-

velopment stage. This paper presents a workflow to achieve quality 3D local-

izations of grapevine buds based on well-known computer vision and machine

learning algorithms when provided with images captured in natural field con-

ditions (i.e., natural sunlight and the addition of no artificial elements), during

the winter season and using a mobile phone RGB camera. Our pipeline com-

bines the Oriented FAST and Rotated BRIEF (ORB) for keypoint detection, a

Fast Local Descriptor for Dense Matching (DAISY) for describing the keypoint,

and the Fast Approximate Nearest Neighbor (FLANN) technique for matching

keypoints, with the Structure from Motion multi-view scheme for generating

consistent 3D point clouds. Next, it uses a 2D scanning window classifier based
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on Bag of Features and Support Vectors Machine for classification of 3D points

in the cloud. Finally, the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) for 3D bud localization is applied. Our approach resulted in

a maximum precision of 1.0 (i.e., no false detections), a maximum recall of 0.45

(i.e. 45% of the buds detected), and a localization error within the range of

259 − 554 pixels (corresponding to approximately 3 bud diameters, or 1.5cm)

when evaluated over the whole range of user-given parameters of workflow com-

ponents.

Keywords: Computer vision, Grapevine bud detection, Precision viticulture

1. Introduction1

In this work, we present an approach for the efficient 3D detection and2

localization of grapevine buds. 3D models were reconstructed from multiple3

images captured during the winter season in natural field conditions (i.e., natural4

sunlight and the addition of no artificial elements) using a mobile phone RGB5

camera.6

Grapevine buds were recognized early in viticulture history as one of the7

most important parts of the plant, mainly because they contain the whole plant8

productive capacity, from which all sprouts, leaves, bunches, and tendrils grow.9

In particular, bud bunch fertility, a.k.a. fruitfulness, is of particular interest, as10

it has a direct impact on the main goal of vine production, that is, to increase11

productivity without affecting fruit quality. It has been shown that bud fruit-12

fulness depends on the amount of sunlight exposure of buds during the period13

starting at bud initiation in early spring throughout its development stage up14

to 30 days after bloom [15, 21, 11, 25, 35, 27]. Shading conditions during this15

period strongly depend on what we call shading structure, consisting in the local-16

ization and geometric characterization of those parts of the plant that occlude17

sunlight, mainly the leaves and bunches that grow after bloom. In addition,18

sunlight exposure can be used by growers to influence the productivity of the19

next period by choosing those buds that received the most sunlight exposure.20
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In practice, this happens by deciding pruning procedures late in the winter [23].21

There is a balance, however, as unpruned buds will produce vegetation, shading22

the newly initiated buds, and therefore, affecting the productivity of the next23

period. The decision of optimal pruning is, therefore, a complex task that must24

be carefully balanced between: (i) productivity maximization of the starting25

period determined by buds with maximum sun exposure, and (ii) productiv-26

ity maximization of the following period determined by the shading conditions27

resulting from the green vegetation growing from those buds.28

A solution to the first issue requires measuring the sun exposure of individ-29

ual buds at regular intervals from initiation to 30 days after bloom and then30

recovering this value for each bud months later during winter pruning. Sunlight31

exposure has been measured so far through manual positioning of radiation32

sensors [25]. These manual procedures, however, are far from efficient for the33

massive measuring of sunlight exposure of individual plants, not to mention34

of individual buds. Our work aims to partially fulfill the need for an efficient35

method for measuring and recording the sunlight exposure of individual buds.36

The general rationale behind our approach is that it is possible to compute37

the sunlight exposure of a bud with high-precision when the precise 3D local-38

ization of the bud, the shading structure around it, the geo-positioning of the39

field, and the dates of interest are fed to a sun radiation model [29, 8]. It is40

an ambitious goal, attended partially by the present work that provides a so-41

lution to the 3D localization of winter buds. Future work, however, will have42

to solve the problem of producing the shading model. This could be done by43

localizing buds from initiation till the end of summer, and then by identifying44

buds between consecutive 3D modelizations to allow the recording of long-term45

sun exposure. A solution to the second issue requires a thorough understand-46

ing of which summer shading structures result from different winter pruning47

procedures and trellis systems [11, 14]. This demands measuring the shading48

structure, a procedure which is currently unavailable.49

Simulations are a possibility for partially overcoming the inability to recon-50

struct the shading structure, necessary for solving both issues. There is a line of51

3



research that studies different procedures for producing simulated whole plant52

shading structures, including the canopy and bunches [13, 16]. They typically53

require plant architecture and bud localization as input. However, bud local-54

ization information, being inexistent, is provided by randomly simulating their55

position. Our work provides a solution to the latter, while [26] is one of the56

many studies that provide a solution to the former. Despite being a simulated57

model, the shading structure has the potential to produce invaluable —and to58

this day inexistent— information on the (simulated) long-term sun exposure of59

large bud samples, including months with a fully grown canopy. In particular,60

with plant architecture before the winter pruning, it is possible to simulate the61

backward shading structure of the previous spring as well as different forward62

shading structures resulting from different pruning treatments.63

Finally, we note that both issues require an autonomous system for executing64

pruning. Historically, pruning procedures have been simplified to be accessible65

for humans. However, this may change with the extra information provided66

by 3D modeling, namely, the identification of fruitful buds and predictions of67

next-period’s shading structures. With this information, the resulting optimal68

pruning may be too sophisticated to be amenable for human execution, requiring69

autonomous pruning systems.70

In addition to measuring sunlight exposure and guiding autonomous prun-71

ing, bud localization is also required as part of the measuring processes of other72

variables of interest in viticulture. These are bud count, type-of-bud classifi-73

cation, bud geometric characterization, internode length, and bud development74

stage. Their values at any location are of importance to agronomists for decid-75

ing on possible treatments (e.g., the application of fertilizers, canopy pruning),76

or for predicting plant productivity. Observation and measurement of crop vari-77

ables is a fundamental task that offers the agronomist information about crop78

state, providing the means for informed decision-making of what treatments79

must be applied in order to maximize productivity and crop quality. At present,80

these variables are measured through direct or indirect human visual inspection,81

whose elevated cost often results in the measurement of only a small sample of82
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all cases. When data are scarce, even powerful statistical techniques may still83

result in high uncertainty in the decision-making process, motivating the intro-84

duction of improved sensing procedures. Locating buds is a necessary task to85

conduct a proper measurement of the above variables. However, 2D localization86

is sufficient for all variables with the exception of internode length, for which 3D87

localization of two consecutive buds in a cane is necessary to avoid perspective88

errors. Still, automatic, high-throughput measurement of these variables would89

come with no extra cost with an autonomous 3D localization system in place.90

1.1. Related work91

There are many computational approaches to aid viticulture, including de-92

tecting grapes and bunches, estimating grape size and weight, estimating pro-93

duction and foliar area indexes, phenotyping, and autonomous selective pulver-94

ization [19, 30, 6, 12, 2, 31]. For a more extensive review, see [37].95

Specifically concerning the detection of grapevine buds, there are two re-96

cent studies (in 2D only) that address the problem of grapevine bud detection97

[38, 12]. The first one presents a grapevine bud detection algorithm designed98

specifically to establish the groundwork for a future autonomous pruning sys-99

tem in the winter season (with no leaves left that may occlude the vision and100

operation of the cutting mechanism). Bud detection is performed from RGB101

images (the image resolution in this study is unknown). Furthermore, on top of102

this assumption, images are captured indoors with an industrial CCD camera103

with controlled background and lighting conditions. To discriminate between104

plant and background pixels, the authors apply a simple threshold resulting in a105

binary image to obtain a wire skeleton of the plant. Under the assumption that106

bud morphology is similar to that of the corners, they apply Harris’ algorithm107

[9] to the skeleton image for detecting those corners. This process produces a108

recall of 0.702, i.e., 70.2% of buds detected. Although some improvements are109

suggested by the authors, the most striking limitations of this work are the need110

for images captured under controlled indoors conditions and the fact that the111

resulting localizations are in 2D. A second work for bud detection is presented112
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by Herzog et al. [12]. This work introduces three methods of bud detection.113

The best results are obtained with the semi-automatic method that requires114

human intervention for validating the quality of the results. Detection is based115

on 3456× 2304 RGB images, where the scene is altered with an artificial black116

background, producing a recall of 0.94. The authors argue that this recall is117

enough to satisfy the phenotyping of plants. However, as the authors themselves118

point out, these good results are mainly explained by the particular color and119

morphology of the buds, captured when bud sprouts are visibly green and their120

average size is around 2cm (compared to a typical 5mm diameter of a dormant121

bud) which makes it easier to discriminate them visually from other plant com-122

ponents. Although these works represent important advancements in specific123

bud detection applications, they suffer from some of the following limitations:124

(i) the use of an artificial background, (ii) controlled indoors luminosity, (iii) the125

need for human intervention, (iv) the detection of buds in an advanced stage of126

development, (v) detection is in 2D.127

Dey et al. [5] introduced a pipeline for recovering the 3D structure of the128

grapevine plant in the spring-summer season (i.e., with leaves and fruits) from129

a 3D point cloud. This 3D point cloud visually represents the surface parts of130

the environment, where each point is represented by a tuple containing the 3D131

position in world coordinates (x, y, z). Cloud reconstruction is obtained with132

the algorithm proposed by Snavely et al. [28]. Afterwards, the cloud is classified133

into leaves, branches, and fruits by means of a supervised classification algorithm134

that uses shape and color features . The experiments show an accuracy of 0.98135

for grapes before maturation (still green) and 0.96 for fully ripe grapes (color136

change), where accuracy corresponds to the proportion of all observations (both137

grapes and background) that were correctly classified. Despite the similarities138

with our work, their work classifies grapes and ours classifies buds, making it139

hard to compare them. This is mainly due to the geometrical nature of the140

features they use that one would expect to work better for close-to-spherical141

shapes such as that of grapes, but which may work poorly for buds that present142

a highly irregular shape.143
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2. Materials and Methods144

In this section we provide a detailed description of our approach of 3D de-145

tection and localization of grapevine buds together with a detailed description146

of the input collection of images.147

The detection and localization workflow consists of five stages as depicted148

in Fig.1: (1) a 3D construction technique known as Structure from Motion [10]149

that, given as input a set of 2D images of some scene, produces both the 3D150

geometry (point cloud) of the scene and the camera pose of each 2D image;151

(2) a scanning-window technique [36] over each 2D image of the scene, used for152

classifying each of the image-patches corresponding to each window as either a153

bud or not, through the classifier presented by [20]; (3) a voting scheme for the154

classification of each 3D point in the cloud as being part of a bud or not, based155

on the number of patches and number of images in the scene that contain its156

projection; (4) a clustering stage for the 3D detection of buds by running the157

DBSCAN spatial clustering algorithm [7] over the 3D cloud points classified as158

part of a bud, with each cluster representing a detected bud; (5) localization of159

buds as the center of mass of the point cloud corresponding to each cluster.160

The first stage consists in the use of the 3D reconstruction technique known161

as Structure from Motion (SfM) [10] that, given as input a set of 2D images162

of some scene, produces both the 3D geometry (point cloud) of the scene and163

the camera pose of each 2D image (see an illustrative result of stage 1 in Fig.1,164

corresponding to an actual scene reconstruction from images in the collection).165

The method starts by detecting the keypoints of the 2D images using the ORB166

(Oriented FAST and Rotated BRIEF) algorithm [24]. These keypoints are then167

grouped in projection bundles, one per 3D point in the cloud, with each image168

contributing at best one keypoint to the bundle. Each of the bundle keypoints169

corresponds to the projection of the 3D point in its corresponding image. The170

trick is that it is possible to construct these projection bundles before knowing171

the actual location of the corresponding 3D point, by considering that keypoints172

are the projection of the same 3D point if they match visually. This matching173
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Figure 1: Schematics of the workflow for 3D bud detection and localization. The input is a set

of 2D images of some scene (upper-left). Stage 1: estimation of 3D points and camera pose

(cones) for 3D scene reconstruction by Structure from Motion. Stage 2: scanning-window

2D detection of buds over each 2D image of the scene, showing in green those keypoints

classified as bud, and in red, those classified as non-bud. Stage 3: voting scheme to produce

the classification of 3D points as bud or not (green and red dots, respectively). Stage 4:

spatial clustering of all 3D bud points to individualize buds, by considering different clusters

as different buds (white circles). Stage 5: locates buds as the center of mass of 3D points of

clusters (blue dots for each cluster). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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is conducted by first applying the DAISY algorithm [32] to compute a visual174

feature descriptor of the local neighborhood of each keypoint, and then using175

the FLANN (Fast Approximate Nearest Neighbor Search) algorithm [18] to vi-176

sually match keypoints of different images in the scene. To do this, it takes177

every two images of the scene and performs a symmetric distance comparison,178

in feature space, between the feature descriptors of their keypoints. More pre-179

cisely, it considers that a keypoint k of the first image visually matches some180

keypoint descriptor k′ in the other, if on the one hand, it holds that among all181

keypoints in the second image, descriptor k′ is the closest to descriptor k. On182

the other hand, the opposite also holds, that is, if among all descriptors in the183

first image, descriptor k is the closest to descriptor k′. Ultimately, the goal is184

to use these bundles to determine not only the position of these 3D points, but185

also the camera pose of each image. Clearly, a single bundle is not enough, and186

since it provides at most one projected point per image, it is insufficient to con-187

strain its pose. Instead, more bundles increase the constraint, as they provide188

more projected points per image, to eventually restrict its pose completely. In189

practice, the matching is noisy, and there is no analytical solution to this con-190

straint problem, so the process proceeds through a minimization called bundle191

adjustment [33]. The bundle adjustment proceeds iteratively in an online mini-192

mization process, proposing at each step a value for the camera pose parameters193

as well as the coordinates of the 3D points and computes as cost function the194

so called reprojection error. This is computed as follows: (i) first it uses the195

camera poses to project each 3D point into each 2D image; (ii) then it computes196

the squared distance between each keypoint in the image to its corresponding197

projected position; and (iii) it sums these squared distance over all keypoints of198

all 2D images and reports its squared root, resulting in a quantity measured in199

pixel units. The implementation of SfM used in this work is that provided by200

the OpenCV 3.2.0 open source library [3], which implements the SfM version1 of201

Hartley and Zisserman [10] described in this section. It also uses the third-party202

1http://docs.opencv.org/trunk/d4/d18/tutorial_sfm_scene_reconstruction.html
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library Ceres-Solver (A Nonlinear Least Squares Minimizer) [1] for the bundle203

adjustment minimization process.204

The second stage of the proposed workflow runs a scanning-window 2D de-205

tection technique [36] over each 2D image of the scene. This technique proceeds206

by sliding a fixed size window over the whole image, at fixed size steps with207

some overlap, and by classifying each image patch covered by each window ei-208

ther containing a bud or not. The classification is performed using the classifier209

proposed by [20]. The results are patches with known geometry and localiza-210

tion in the image, classified either containing a bud or not. Results of this stage211

are shown in stage 2 of Fig.1, with keypoints belonging to patches classified212

as bud depicted in green (light gray) points, and those belonging to non-bud213

patches depicted in red (dark gray). The classifier of Perez et al. proceeds in214

a workflow of computer vision and machine learning sub-processes: (i) First,215

it runs Scale-Invariant Features Transform (SIFT) [17] for computing the low-216

level visual features of the keypoints of each patch; (ii) it then runs Bag of217

Features (BoF) [4] for constructing a higher level descriptor of the patch, based218

on patch keypoints and their SIFT descriptors; and (iii) it concludes by running219

a Support Vectors Machine [34] modeler for training a binary classifier based220

on a collection of labeled patches represented by their BoF descriptors. It is221

important to note that in this work, we reproduced the same classifier of Perez222

et al. by training with the parameters provided in their work and the training223

collection made publicly available2, leaving only the choice of scanning-windows224

parameters, i.e., window size and step. At first glance, it would seem that in225

order to obtain a good classification, one should choose a window and step sizes226

so that each bud in the image is perfectly circumscribed by some patch. This is227

clearly not only impossible to perform for all buds and images for fixed window228

and step sizes of the training collection —as buds are variable in size— but229

it is also impossible for a testing collection, since here bud sizes and positions230

would be unknown. However, together with the classifier, Perez et. al. provide231

2Available in http://dharma.frm.utn.edu.ar/vise/bc/
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a robustness analysis for window geometry showing that the classifier is robust232

to patches that have lost up to 40% of the bud’s pixels (i.e., at least 60% of the233

bud’s pixels are visible), and it contains non-bud visual information covering up234

to 80% of the patch (i.e., bud pixels cover at least 20% of the patch). Based on235

these numbers and an approximate bud diameter of 150 pixels obtained from an236

inspection of our collection of 2D images (see below for more details of this col-237

lection), we chose a window size of 150×150 pixels and a step of 75 pixels. This238

guarantees a 50% overlap between contiguous patches, considering that these239

values should produce bud coverage within the accepted values of the robustness240

analysis.241

The third stage of the workflow combines the results of the first two stages:242

the 3D position of keypoints and classification of patches to produce the classifi-243

cation of these 3D points as part of a bud or not. The 3D classification proceeds244

through a voting scheme for each 3D point that classifies it as being part of a245

bud whenever the number of images in which it has been detected surpasses246

a threshold τI . Here, a 3D point is considered as detected in some 2D image247

whenever the keypoint in the projected bundle of this 3D point corresponding248

to that image falls within a minimum number τP of bud patches of that image249

(see Fig.1). The basic rationale behind this voting scheme is the intuition that250

only true bud visual aspects will show in all images, whereas noisy detections251

would show them in only one of the images and cancel them out by the voting252

filter as long as it is kept in low levels. As with previous stages, this process253

is illustrated in Fig.1, showing five lines going from one keypoint in each 2D254

image in stage 2 to one 3D point in the reconstructed scene of stage 3. The255

keypoints at the point of origin of these 5 lines correspond to a bundle, with 3256

(2) of them classified as bud (no-bud), so both the keypoint and its line were257

colored green (red), or light (dark) gray for grayscale versions of the image. As258

seen in the image, the 3D point is colored red (dark gray), corresponding to259

no-bud, a result of the voting scheme for threshold τI = 4 or τI = 5.260

At this point we have a 3D point cloud, with each point in the cloud clas-261

sified as being part of a bud or not. This however does not individualize buds,262
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nor does it provide a localization for them (a process conducted in the last two263

stages of our workflow) also depicted in Fig.1. To do this, the workflow continues264

with stage 4 that executes the Density-Based Spatial Clustering of Applications265

with Noise (DBSCAN) [7] to spatially cluster the 3D bud points, considering266

different clusters as different buds. This algorithm works under the fundamental267

assumption that points located in dense regions belong to the same cluster, thus268

searching for high density regions separated by low density regions. An impor-269

tant property of this algorithm is that it requires no predetermination of the270

number of clusters, a property necessary to automatize detection in scenes with271

an a priori unknown number of buds. It is also designed to discover arbitrary-272

shaped clusters and is robust to noisy points excluding them from any cluster.273

The key idea of the cluster recognition process is to detect high density regions274

by requiring for each point of a cluster that the region of radius r around it con-275

tain at least m other points belonging to the same cluster. The two parameters r276

and m are user-specified and may drastically affect the outcome of this stage (as277

shown later in the results section 3). To conclude we have to deal with a rather278

technical issue, necessary for a proper reproducibility of our workflow. Scene279

reconstruction by the SfM method may result in rather arbitrary scales, with280

differences of orders of magnitude, resulting in parameter values r which greatly281

affect the DBSCAN process. To give a sense of this variation, we computed for282

each scene the mean minimum distance (MMD) that reports the mean value of283

the distance of each 3D point in the cloud of that scene to its closest 3D point284

in the same scene. Fig.2 shows a histogram for MMD over the 47 scenes, in log285

scale, showing a variation range of over 15 orders of magnitude. To address this286

dispersion, we re-scaled the radius parameter r multiplying it by the MMD of287

the scene before passing it to DBSCAN.288

The workflow then ends with a fifth and final stage that locates buds in the289

centers of mass of the 3D points of its cluster.290

The final outcome of the workflow just described is bud clusters in 3D to-291

gether with their respective centers of mass. An ideal correct outcome would,292

therefore, consist of a number of clusters matching exactly the number of buds293
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Figure 2: Histogram of the mean minimum distance (MMD) over the 47 scenes of the corpus,

with the X-axis shown in log scale. The histogram shows the enormous dispersion in MMD,

with cases ranging over 15 orders of magnitude.
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in the scene, with their centers of mass coincident with the center of mass of294

the buds. Instead, wrong outcomes would consist of mislocated clusters, worse,295

spurious clusters, that correspond to no actual bud of the scene or buds that296

have no cluster representing them. In the next subsection we describe in de-297

tail the collection of 47 scenes used in the evaluation described in the following298

section. It first introduces formally some performance measures that quantify299

these different aspects of the quality of the 3D bud detection workflow. Then,300

it reports their values for a representative spectrum of values for the four user-301

defined parameters that control these outcomes (i.e., image-voting threshold τI ,302

patch-voting threshold τP , DBSCAN radius r, DBSCAN minPts m).303

2.1. Collection of scenes and their 2D images304

We captured a collection of images that satisfy the requirements of this work:305

they were taken in the winter season using RGB mobile phone cameras in natural306

field conditions. In addition, there are specific requirements for capturing 2D307

images imposed by the third-party modules of the proposed workflow: the SfM308

module of OpenCV 3.2.0 for 3D reconstruction of grapevine branches and the309

2D detection algorithm based on the approach of Perez et. al. [20]. Firstly, the310

documentation of the SfM algorithm3 recommends in the order of 3-5 images for311

a proper reconstruction, captured from differing points of view, but as close as312

possible to one another. In addition, the elements of the scene (i.e., branches)313

need to be well focused, and exposition levels kept within reasonable values.314

Secondly, the scanning windows algorithm and the bud classifier used within315

require buds of at least 100 pixels to maintain the robustness of classification316

results, as recommended by the authors. This resulted in the following image317

captured:318

1. with a Samsung Galaxy A5 mobile phone camera, without flash, in JPEG319

format, and a resolution of 4128× 3096 pixels;320

3http://docs.opencv.org/trunk/da/db5/group__reconstruction.html
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Figure 3: Example of the images of one scene of the corpus, with circles marking the bud

location.

2. satisfying the focus and exposition level requirements of the SfM modules321

as detailed above, with 5 images per scene;322

3. positioning the camera over an imaginary circular path around the branch,323

at approximately equal displacements between them, with an overlap324

above 80%, and always pointing toward the branch, conditions that guar-325

antee a good reconstruction;326

4. at a distance of 12cm from the branches to guarantee that buds are at327

least 100 pixels in diameter for the chosen resolution;328

5. on sunny days, under normal field conditions, without altering the scene329

with artificial elements, and maintaining natural lighting conditions;330

6. between 15:00 and 17:00 hours in late August (winter in the southern331

hemisphere), when leaves are either dry or have fallen, but before sprouting332

again (see Fig.3).333

We captured 60 scenes for a total of 300 2D images, corresponding to branch334

parts of a single grapevine plant (as exemplified by the 5 images of Fig.3). It335

is worth mentioning that our workflow omits any automation for the selection336

of input images in order to guarantee the success of the 3D reconstruction.337

Therefore, from a total of 60 scenes, 10 were manually discarded for not following338

the focus and exposition quality requirements of the SfM module. After the SfM339

reconstruction, 3 more were discarded due to failure in reconstruction (detected340

by reprojection errors of 60 pixels or more). After this manual pruning, the341

collection was left with 235 images corresponding to the 47 remaining scenes,342
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with mean and standard deviations of the reprojection error of 2.91 and 5.41343

pixels, respectively. Among these scenes we counted a total of 106 buds, with344

an average of 2.25 buds per scene.345

We ran the 2D bud classification over this image collection to assess the merit346

of the 2D bud classifier of [20] for stage 2, when pre-trained over the original347

image collection. To assess classifier recall, i.e., the proportion of true buds it348

could detect, we considered two different collections of patches representing true349

buds. The first was a collection of perfectly-circumscribed patches extracted350

from rectangles that perfectly circumscribe each bud in each image collection.351

Second, we ran a scanning-window of 150 × 150 pixels and a step of 75 pixels352

and collected all patches that overlapped a bud on at least one pixel. We also353

assessed the precision classifier, i.e., the proportion of detected buds that were354

indeed true buds. To do this, we considered the same scanning-window, but this355

time collected the complement set, i.e., all patches that did not contain a single356

bud pixel. After running the classifier over all these image patches, we obtained357

a recall of 0.978 for the perfectly-circumscribed patches, a recall of 0.0596 for the358

single pixel overlapping cases, and a precision of 0.0511 for the non-overlapping359

patches. The latter is a result of the fact that from all ≈ 559K patches of the360

scanning-window containing no buds, 15756 were incorrectly classified as buds,361

i.e., were false positives, drastically reducing the proportion of true positives362

over all those classified as buds.363

3. Experiments364

In this section we present results of systematic experiments that evaluate365

the quality of the 3D structures produced by our approach. We first introduce366

quantitative performance measures that assess detection and localization errors367

that report hard errors of true buds that were undetected, or clusters that de-368

tected no bud, and soft errors reporting how far the correctly detected buds369

fell from the actual position of the buds they detected. Values for these perfor-370

mance measures are reported systematically for a representative range of values371
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of user-input parameters, the two thresholds τI and τP of the voting scheme372

(stage 4), the radius r, and minimum number of points m of the DBSCAN373

clustering algorithm.374

3.1. Performance Measures375

Now, let us explain the details of the detection and localization errors.376

Detection error: This measure represents the hard errors of true buds377

that were undetected or clusters that detected no bud, reported by the well-378

known precision and recall measures, respectively. These are formally defined as379

recall = TP
TP+FN and precision = TP

TP+FP , with TP , FP , and FN denoting true380

positives, false positives, and false negatives, respectively [22]. These quantities381

contrast the results of our 3D detection workflow with the ground truth obtained382

from manual detection of buds, corresponding to the center of mass of the perfect383

circumscription rectangles described in the collection section above (c.f. section384

2.1).385

Specifically in this work, we consider that a bud has been correctly detected386

—that is, it is a TP— whenever it satisfies symmetrical closeness to some cluster387

—i.e., this bud is the closest bud to its closest cluster— with closeness being388

measured in Euclidean distance in pixels. This definition of TPs could result in389

clusters far away from a bud being counted as its TP, as long as they satisfy390

symmetrical closeness. In practice, however, our results show this is not the case,391

as worst localization errors are around 600 pixels. Additionally we consider that392

a bud has been missed —that is, it is a FN— when its closest cluster is itself393

closer to some other bud, and that a cluster detects no bud —that is, it is a394

FP— when it is not the closer cluster to its closest bud. The definitions of395

these quantities are illustrated in Fig.4. Dotted rectangles A and B mark buds396

manually circumscribed with their center of mass marked as a dot within it.397

The blue (dark) dots 1, 2, and 3 within the dotted circles mark the projection398

of the center of mass of three detected bud clusters. Since cluster 1 is the closest399

to bud B, and at the same time, bud B is the closest bud to cluster 1, then,400

cluster 1 is the TP of bud B. In addition, even though clusters 2 and 3 have401
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Figure 4: The figure illustrates the definitions of true positives (TP), false positives (FP),

and false negatives (FN). Dotted rectangles A and B mark buds manually circumscribed with

their centers of mass marked as a dot within it. The blue (dark) dots 1, 2, and 3 within the

dotted circles mark the projection of the center of mass of three detected bud clusters whose

position has been selected manually for illustration purposes. Since cluster 1 is the closest to

bud B, and at the same time, bud B is the closest bud to cluster 1, then cluster 1 is the TP

of bud B. Even though clusters 2 and 3 have bud B as the closest one, they are themselves

not the closest to B (cluster 1 is), so they are FPs. Finally, bud A is a FN as none of the

clusters has this bud as its closest. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)

bud B as the closest one, they are themselves not the closest to B (cluster 1 is),402

so they are FPs. Finally, bud A is a false negative as none of the clusters has403

this bud as its closest.404

Localization error: Detection error measured by precision and recall. It405

is an important measure of quality, but it may miss the soft localization errors406

that zoom into the detected buds represented by true positives and report how407

far their detection has fallen from their true position. Formally, we report as408

localization error the mean of the individual localization error of all buds, with409

18



the individual localization error computed as the distance between the center410

of mass of the circumscribed rectangle of the bud and the center of mass of its411

symmetrically closest cluster.412

The computation of precision, recall, and localization error require the 3D413

coordinate of each bud’s center of mass. In practice, this demands measuring the414

3D localization of each bud over a common coordinate system for all of them, an415

extremely complex task to be performed manually, so the alternative of measur-416

ing ground-truth 3D localizations for our collection was discarded as an option.417

We considered instead an approximated alternative for measuring these errors,418

one that computes them in the 2D pixel space of each image. Therefore, instead419

of considering the 3D localizations of both clusters’ center of mass and bud’s420

center of mass, it considers their reprojected localizations over each individual421

image, i.e., their coordinates in the 2D pixel space of each image correspond-422

ing to their position in the field of view of the camera corresponding to that423

image. The computation of these reprojected localizations can be easily auto-424

mated. Once computed, the computation of precision, recall and localization425

errors followed exactly their 3D definition, but over 2D localizations, replacing426

3D Euclidean distance with 2D Euclidean distance in pixels. Fig.5 illustrates427

this approximation with the image on the right showing two clusters of the 3D428

point geometry of a branch, with their centers of mass reprojected into one of429

the 2D images of the scene. The 2D localization errors are shown in red line430

segments.431

Now, we proceed to discuss the results obtained from the systematic exper-432

iments.433

3.2. Systematic results434

Fig.6 reports precision and recall detection errors as well as the localization435

error (in pixels) for all assignments obtained from the following values of the four436

free parameters τI ∈ {1, 2, 3, 4, 5}, τP ∈ {1, 2, 3, 4}, r ∈ {0.01, 0.05, 0.10, 0.50, 1,437

2, 3, 5, 10, 50, 100}, and m ∈ {1, 3, 5, 10, 25, 50, 100, 200} where τI and τP are the438

image and patch voting thresholds, respectively, and r and m are the DBSCAN439
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Figure 5: This figure shows the reprojection into 2D of a 3D bud detection, together with

its 2D localization error, computed as the reprojection error. In the figure, the light green

squares A and B (or light-gray in gray-scale version) correspond to the actual localization

of the two buds, whereas the blue circles 1 and 2 (dark gray in gray-scale version) represent

the reprojected center of mass. The 2D localization error of each bud is represented by the

length of red line segments 1A and 2B (dark gray in gray-scale version). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of the

article.)

20



Figure 6: The figure shows recall vs precision detection errors for all assignments of the free

parameters τI , τP , r, m, with a gray-scale color coding denoting the localization error in

pixels(with darker color for lower errors).
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radius and minPts, respectively. This figure shows a scatter plot of recall versus440

precision with a gray-scale color coding denoting the localization error. In this441

plot, darker colored dots represent assignments of the four free parameters with442

a lower localization error, with the best possible outcome for the detection error443

corresponding to both recall and precision equal to 1, located in the top-right444

corner at coordinates (1, 1). Results in the plot show an abrupt fall of recall445

for small precisions, next, a rather constant recall after a precision of 0.2, and446

finally, for a large precision, a fall in recall to its lowest value of recall = 0.2 for447

precision = 1. The worst localization errors of approximately 600 pixels (light-448

gray) are concentrated at mid-range recalls of around 0.5 and decrease for either449

large and small recall values. As extreme assignments for the detection error,450

we have the upper-left case of recall = 0.85 and precision u 0, meaning that451

although most buds have been detected (85% more precisely), an extremely large452

number of buds has been falsely detected. On the other end, we have the dark453

dots in the lower right sector corresponding to recall = 0.2 and precision = 1.454

This case corresponds to assignments of the free parameters that incorrectly455

miss 80% of the buds, but on the other hand, not a single detected bud is456

wrong. More details of extreme assignments are shown in Table 1. Although457

there are no assignments close to optimal values of (1, 1), it is worth highlighting458

that for a precision of exactly 1, recall values range between 0.22 and 0.45.459

The data plotted in Fig.7 is the precision and recall over all assignments of460

the four free parameters showing two box-plots, one for precision (in light-gray)461

and one for recall (in dark-gray) with boxes grouping all assignments of each462

image voting threshold, regardless of the value of the other parameters. The463

figure shows a clear trend for both precision and recall, with the distribution464

of precision assignments leaning toward the upper values for larger thresholds,465

concentrating on 90% for τI = 4, and on 100% for τI = 5. In contrast, recall466

distribution moves toward lower values for large thresholds, concentrating at467

50% for τI = 1 and decreasing down to 30% for τI = 5.468
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Precision Recall #(Assignments)
Localization

error of TPs
τI τP r m

1 0.45 25 554.87 (34.7) 3.08 2.52 1.83 120.60

1 0.441 47 462.73 (21.98) 3.53 2.40 3.48 94.26

1 0.423 2 371.96 (2.45) 4.00 2.00 0.75 7.50

1 0.414 27 367.96 (0.0) 4.00 2.00 6.77 98.70

1 0.405 35 330.90 (0.00) 4.00 3.00 5.80 83.97

0.001 0.82 1 247.5 1.00 1.00 10.00 1.00

0.001 0.82 1 244.21 1.00 1.00 5.00 1.00

0.002 0.775 1 305.98 1.00 1.00 50.00 1.00

0.021 0.753 1 348.84 1.00 1.00 50.00 3.00

0.052 0.737 1 374.70 1.00 1.00 50.00 5.00

Table 1: A summary of best results with the top (bottom) 5 rows showing best results in

terms of precision (recall). The values with the best precision (recall) are marked in bold.

The column “#(Assignments)” corresponds to the number of different value assignments for

the four free parameters that produced the precision and recall results of the first two columns.

The table is completed with the mean and standard deviation of the true positive localization

errors over these assignments and the mean of each of the four parameters over their values

for each of these assignments.
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Figure 7: Trends for precision and recall. The light-gray boxes show precision and dark-

gray boxes recall, with boxes grouping all assignments of the four free parameters of each

voting threshold τI . The data plotted in the figure is precision and recall over all parameter

assignments.
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4. Discussion469

From Fig.6 we considered as best outcomes those located at precision =470

1 (i.e., all detections correspond to actual buds) and recall in a range from471

0.38 to 0.45 (i.e., between 38% and 45% of buds detected). These assignments472

show localization errors in the range of 259 − 554 pixels, which correspond to473

approximately 3 buds and approximately 1.5cm. This is because, for the image474

scale in the collection, average bud diameter is 159 pixels with 95% of the total475

probability mass falling within the range of [80, 263] pixels. In the grapevine476

variety of our study, average bud diameter is approximately 5mm.477

We consider high precision at the expense of lower recall because we regard478

these to be best for the central application of our work: estimation of future479

shading (canopy) structure through simulations. As mentioned in the introduc-480

tion, these simulation techniques take as input different numerical parameters481

of plant architecture including, in particular, the localization of its buds. Since482

in practice, it is an extremely difficult task to measure even the 3D localization483

of a few buds, these simulations contemplate the possibility of localizing missing484

buds —even all 100% of them— through stochastic procedures. In other words,485

they contemplate low recall values, even 0%. Furthermore, these methods may486

not easily tolerate the input of badly localized buds, or even worse, buds located487

where in practice there is none, as it would be the case of falsely detected buds.488

In those cases —equivalent to low precision— the simulated structure may end489

up with false shoots, bunches, fruits and leaves. These results, however, still490

present important limitations. First, the sampling of these 45% of buds cannot491

be controlled or designed, but is rather biased by unknown visual characteristics492

of the undetected buds. In addition, the workflow as presented here still depends493

on manual capturing of a handful of images for tens of scenes per plant, a clear494

bottleneck for high throughput. A fully automated workflow would require: (i)495

recording all reconstructed scenes in a common coordinate system, currently496

reconstructed into completely independent coordinate systems; (ii) automatic497

pre-selection of images, e.g., focused, valid exposures, (iii) validation of correct498
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3D scene reconstructions, e.g., those with low reprojection errors, and (iv) au-499

tonomous planning and positioning of an autonomous capturing device (e.g.,500

drone) for producing valid image collections for each reconstruction.501

While these issues render the current approach still unpractical for satisfying502

all the requirements of the measuring process of the variables of interest, these503

limitations may still be overcome by future research. Indeed, these results are504

strong enough to motivate further research on the possibilities of computer505

vision and machine learning for spatial modelling of vines. We conclude with506

some more detail on the limitations of the two motivating applications:507

• Optimal pruning design: Despite all the limitations, our work provides508

agronomists with novel information on bud localization that is currently509

almost impossible to measure. As already mentioned, this information,510

together with a model of the plant’s architecture, can become input for511

backward and forward simulators to improve the studies on optimal prun-512

ing procedures. Currently, those simulators only use the plant’s architec-513

ture, since bud localization is unavailable, while with our work they can514

locate 45% of them with a maximum displacement of 1.5cm. Subjective515

assessments indicate that these localization errors should not have a major516

impact on the shading structures simulated, an assessment that can only517

be rendered conclusive once actual simulations are performed.518

• Internode length: This variable reports the distance between two con-519

secutive nodes of the same branch. However, since buds always grow over520

nodes, the distance of consecutive buds over the branch are a very close521

approximation of internode length. On the one hand, bud localization522

alone is insufficient, as there is no information on whether those buds be-523

long or not to the same branch. On the other hand, integration with plant524

architecture reconstruction techniques can easily overcome this limitation.525

However, a 45% recall presents a more difficult challenge. This recall is526

still too low for guaranteeing that two detected buds are indeed nearest527

neighbors over the cane. With larger recalls, statistics may be of help by528
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reducing the probability that there is still an intermediate bud between529

any two detected buds.530

The trend of precision boxes Fig.7 highlights a positive feature of the work-531

flow’s voting step: a drastic improvement in precision from 2D to 3D. As already532

discussed above in Section 2.1, the 2D classification resulted in a precision of533

0.0511 corresponding to 15756 non-bud patches falsely classified as bud patches.534

Interestingly, the precision 1.0 for a voting threshold of 5 implies that none of535

these 2D patches contributed to a 3D bud cluster. This is explained by two536

facts: first, that larger voting thresholds require that more 2D images agree on537

their classification of a patch for it to contribute with its keypoints in the 3D538

cloud. Second, this helps clean up the noise by our intuition that only true bud539

visual aspects will show in all images, while noisy aspects will tend to show in540

only few images.541

5. Conclusions542

In this work we introduce a workflow for the localization of grapevine buds in543

3D space obtained from plant parts 3D models reconstructed from multiple 2D544

images, captured during the winter season, using RGB mobile phone cameras545

in natural field conditions. The proposed workflow is based on well-known com-546

puter vision and machine learning algorithms, such as SfM, SIFT, BoF, SVM,547

DAISY, ORB and DBSCAN. We justified the importance of bud 3D detec-548

tion through their potential applications, such as prolonged sunlight exposure,549

autonomous pruning systems, and internode length. When assessed over a rep-550

resentative range of values of user-input parameters, the best outcome obtained551

was a precision of 1 and a recall in the range of 0.38-0.45 with a localization552

error in the range of 259-554 pixels equivalent to approximately 3 buds. These553

results represent an important impact of our approach to the problem of de-554

signing optimal pruning procedures with measurement of bud sunlight exposure555

and autonomous pruning as two relevant and challenging sub-problems. Our556

approach has the potential of providing novel information for producing both557
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backward (previous Spring) and forward (following Spring) simulated shading558

structures paramount for estimating sunlight exposure of buds, and with it, the559

potential productivity of the pruning procedure. There are several automation560

steps still missing, however, which are all addressable by future work: register-561

ing of all the scenes in a common coordinate system, automatic pre-selection of562

images, autonomous detection of valid scene reconstructions (e.g., low reprojec-563

tion errors), and autonomous positioning and posing of the capturing device.564

Finally, further research is required for improving recall, for instance, explor-565

ing novel reconstruction techniques and novel means for aggregating 2D patch566

classification into a detection algorithm. One could also consider integrating567

information from other parts of the plant, for instance, following the informa-568

tion provided by Xu et al. [38]. As discussed in Section 1.1, their work uses569

only information about plant architecture to position buds. This information570

is independent of that used by the workflow of our work, suggesting interesting571

possible integrations.572
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[20] Pérez, D. S., Bromberg, F., Dı́az, C. A., 2017. Image classification for de-632

tection of winter grapevine buds in natural conditions using scale-invariant633

features transform, bag of features and support vector machines. Comput-634

ers and Electronics in Agriculture 135, 81–95.635

[21] Perez, J., Kliewer, W. M., 1990. Effect of shading on bud necrosis and bud636

fruitfulness of thompson seedless grapevines. American Journal of Enology637

and Viticulture 41 (2), 168–175.638

30



[22] Powers, D. M., 2011. Evaluation: from precision, recall and f-measure to639

roc, informedness, markedness and correlation.640

[23] Reynolds, A. G., Heuvel, J. E. V., 2009. Influence of grapevine training641

systems on vine growth and fruit composition: a review. American Journal642

of Enology and Viticulture 60 (3), 251–268.643

[24] Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. Orb: An effi-644

cient alternative to sift or surf. In: Computer Vision (ICCV), 2011 IEEE645

international conference on. IEEE, pp. 2564–2571.646

[25] Sánchez, L. A., Dokoozlian, N. K., 2005. Bud microclimate and fruitfulness647

in vitis vinifera l. American Journal of Enology and Viticulture 56 (4), 319–648

329.649
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