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t. In the past years, several support ve
tor ma
hines anomalydete
tion approa
hes have been proposed in the network intrusion dete
-tion �eld. The main advantage of these approa
hes is that they 
an 
har-a
terize normal tra�
 when trained using a data set 
ontaining not onlynormal tra�
 but also possible atta
ks. Unfortunately, these algorithmsseem to be a

urate only when the normal tra�
 vastly outnumbers thenumbers of atta
ks or anomalies present in the dataset.This work presents an approa
h for autonomous labeling of normal traf-�
 as a way of dealing with situations where 
lass distributions do notpresent the required unbalan
e. The autonomous labeling pro
ess is madeby SNORT, a misuse-based intrusion dete
tion system. Experiments 
on-du
ted on the 1998 DARPA dataset show the proposed autonomous la-beling approa
h not only outperforms existing SVM alternatives but alsoobtains signi�
ant improvement over SNORT itself.1 Introdu
tionIn the past years network se
urity has be
ome a serious problem. In the earlyyears of the Internet, the set of network proto
ols that support it worked rea-sonable well. However as the Internet grew, underlying se
urity faults in thoseproto
ols were observed. Se
urity faults in proto
ols su
h as ARP, TCP, TEL-NET, SMTP and FTP have 
aused most of known atta
ks against network data
on�dentiality, authenti
ity and availability. Currently all of these problems havebeen �xed, however new ways to develop atta
ks are dis
overed everyday.Network managers must be well prepared in order to prevent network atta
ks,i.e., be informed about new vulnerabilities. For several years, intrusion dete
tionsystems (IDS) provided an invaluable help to network managers, be
oming anintegral part of any network se
urity pa
kage.In the intrusion dete
tion �eld two di�erent approa
hes 
an be observed: mis-use dete
tion and anomaly dete
tion [1℄. The idea behind misuse dete
tion isto represent atta
ks in a form of a pattern or a signature in su
h a way that



even variations of these atta
ks 
an be dete
ted. Based on these signatures, thisapproa
h dete
ts atta
ks through a large set of rules des
ribing every known at-ta
k. The main disadvantage of the signature based approa
h is its di�
ulty fordete
ting unknown atta
ks. The main idea of the anomaly dete
tion approa
his to build a statisti
al model for des
ribing normal tra�
. Then, any deviationfrom this model 
an be 
onsidered an anomaly, and re
ognized as an atta
k.Noti
e that when this approa
h is used, it is theoreti
ally possible to dete
t un-known atta
ks, although in some 
ases, this approa
h 
an lead to a high falsepositive rate. This 
apa
ity to dete
t unknown atta
ks has been the 
ause ofthe in
reasing interest in developing new te
hniques to build models based onnormal tra�
 behavior in the past years.The anomaly dete
tion approa
h has been a very a
tive resear
h topi
 insidethe ma
hine learning 
ommunity and it has been the subje
t of many arti
lesover the past years. One of the most su

essful approa
hes is based on theidea of 
olle
ting data only from network normal operation. Then, based onthis data des
ribing normality, any deviation would be 
onsidered an anomaly .Di�erent te
hniques were proposed for 
hara
terizing the 
on
ept of normality[2℄. In pra
ti
e, however, it is di�
ult to obtain 
lean data to implement theseapproa
hes. Verifying that no atta
ks are present in the training data 
an be anextremely tedious task, and for large samples this is simply infeasible. On theother hand, if the data 
ontaining atta
ks is assumed 
lean, intrusions similarto the ones present in the training data will be a

epted as normal patterns,resulting in an in
rement in the number of misdete
tions.Re
ently, di�erent authors proposed the use of support ve
tor ma
hines (SVM)for novelty dete
tion [3,4,5℄ as an alternative approa
h for intrusion dete
tion.One of the major advantages of this approa
h is that it is suitable for handling atraining data set with not only normal tra�
 but also anomalies (i.e., atta
ks).Unfortunately, as was noti
ed by Eskin in [3℄, this works under the assumptionthat the number of normal tra�
 instan
es vastly outnumbers the number ofanomalies, with a proportion of at least 98.5% of the training set being normaltra�
.This last assumption is not ne
essarily true in every situation. It is possible to�nd periods of time where the number of atta
ks present in tra�
 
ould easilyoutnumber normal tra�
 instan
es. This situation 
an also be observed in 
om-monly used datasets for intrusion dete
tion evaluation su
h as the 1998 DARPAdataset [6℄. This dataset was provided by DARPA to the ma
hine learning 
om-munity in the 
ontext of the 1999 KDD Cup for evaluating di�erent IDS ap-proa
hes. Sin
e its publi
ation it has been widely used by many IDS resear
hersover the years. Interestingly, the 1998 DARPA 
lass distribution does not ex-hibit the required unbalan
e. Moreover, it has many days or even weeks wherethe per
entage of atta
ks raises up to 50%.To deal with this and other unbalan
ed 
lass distribution situations a novelapproa
h is proposed. The idea is using SNORT [7℄, a very well known misusesignature-based IDS system, as an autonomous tool for labeling normal tra�
.



The main hypothesis is that using SNORT may possibly redu
e the presen
e ofatta
ks in the tra�
 instan
es used for training, and 
onsequently improving theperforman
e of SVM for anomaly dete
tion.The rest of the work is organized as follows: in se
tion 2 main 
hara
teristi
s ofSVM for anomaly dete
tion are brie�y dis
ussed, together with its appli
ationto the tra�
 network dete
tion �eld. Then, in se
tion 3, a new approa
h forautonomous labeling normal tra�
 is presented. In se
tion 4 a set of experi-ments are 
ondu
ted on the 1998 DARPA dataset for evaluating performan
e ofthe dis
ussed approa
hes. Finally, 
on
lusions and future work are provided inse
tion 5.2 SVM for anomaly dete
tionSin
e their introdu
tion in the mid-1990s, support ve
tor ma
hines [8,9℄ havebeen widely used, being the subje
t of many arti
les on 
lassi�
ation problems.SVM for anomaly dete
tion is an extension of the 
ore SVM ideas for 
lassi-�
ation problems. Traditional SVM approa
hes for 
lassi�
ation uses as inputtraining data 
onsisting of a mixture of data labeled by both 
lasses. In theintrusion dete
tion problem this would 
onsist of data labeled both as atta
kand non-atta
k. The model 
onstru
ted by these approa
hes dis
riminates theinput spa
e in two in�nite regions, one per 
lass, usually using a hyperplane. In
ontrast, the main idea in SVM for anomaly dete
tion [10,11℄ is to use as inputa des
ription of only the normal 
lass of obje
ts (non-atta
k in IDS), assum-ing the rest as anomalies (atta
ks). The model 
onstru
ted by this approa
hdis
riminates the input spa
e in a �nite region 
ontaining the normal obje
ts,while all the rest of the (in�nite) spa
e is assumed to 
ontain the anomalies.The SVM for anomaly dete
tion variants appear in the literature of intrusiondete
tion with di�erent names, whi
h 
ould led to some 
onfusion. In some
ases they are referen
ed as SVM one-
lass algorithms. SVM for non supervisedlearning is another widely used name by some authors. Although, all of thesenames des
ribe important 
hara
teristi
s of this kind of algorithms, in this workthe term SVM for anomaly dete
tion will be preferred.Two major approa
hes were proposed to extend SVM for anomaly dete
tionproblems. One approa
h, proposed by Tax and Duin [10℄, is based on the idea of�nding an hypersphere with 
enter c and minimal radius R 
ontaining most ofthe normal data, dis
riminating all other data not in the sphere as anomalies. Asin standard SVM approa
hes, the dis
riminating surfa
e (the sphere), as well asthe data, may be mapped into a feature spa
e by some kernel fun
tion. Anotherapproa
h proposed by S
holkopf [11℄ tries to separate the normal data pointsfrom the anomalies by �nding the hyperplane that is maximally distant from theorigin. When a RBF kernel is used, it was shown the two approa
hes 
onvergeto the same solution [12℄.



Due to spa
e restri
tions only a brief des
ription of Tax's approa
h is provided.For a des
ription of the hyperplane formulation the reader is referred to [11℄.2.1 SVM based on the hypersphere formulationThe sphere formulation has an intuitive geometri
 idea: the normal data 
anbe 
on
isely des
ribed by a sphere en
losing the data in some high-dimensionalfeature spa
e. A graphi
al example of this 
an be observed in Fig. 1. The presen
eof noise, i.e., in
orre
tly labeled training data, 
an be solved by introdu
ingsla
k variables. The use of sla
k variables allow for some normal data pointsnot in
luded in the sphere des
ription. Although, this 
an led to a number ofanomalies lying within the sphere as well.

Fig. 1. The geometri
 representation of the sphere formulationThe task to minimize the volume of the sphere 
an be mathemati
ally des
ribedas:
min

R∈ℜ,ξ∈ℜl,c∈F

R2 + 1
νl

∑l

i=1 ξi,

subject to : ||Φ(xi) − c|| ≤ R2 + ξi

ξi > 0

(1)The 
enter c of the hypersphere lies within the high-dimensional feature spa
e F .The non-negative sla
k variables ξi allow for some data points to lie outside thehypersphere. The 
onstant ν gives the trade-o� between the two terms: volumeof the sphere and the number of target obje
ts reje
ted.Sin
e the 
enter c lies within the high-dimensional feature spa
e, it is not possibleto dire
tly solve the primal problem (1) of the sphere formulation. The followingdual problem where all the variables have low dimensions is solved instead:



min
α∈ℜl

∑l

ij=1 αiαjk(xi, xj) −
∑l

i=1 αik(xi, xi),

subject to :
∑l

i=1 αi = 1,

0 ≤ αi ≤
1
νl

.

(2)The mapping of datapoints to a high-dimensional feature spa
e is de�ned bythe kernel fun
tion k(xi, xj), a generalization of the inner produ
t in the featurespa
e. Commonly used kernels are linear, sigmoid, polynomial, among others.One of the most su

essful kernels used in the �eld of network tra�
 anomalydete
tion is the radial basis fun
tion (RBF), shown in following equation:
k(xi, xj) = e−γ(xi−xj)

2 (3)Where γ = 1
σ2 . Noti
e the parameter γ gives the width, or spread, of the kernelfun
tion.The 
lassi�
ation between normal and anomalous tra�
 is done through thede
ision fun
tion, 
omputed as follows:

f(x) = sgn(R2 −

l∑

ij=1

αiαjk(xi, xj) + 2

l∑

i=1

αik(xi, xi) − k(x, x)) (4)The radius R2 plays the role of a threshold, and it 
an be 
omputed by equatingthe expression under the sgn to zero for any support ve
tor.2.2 Previous work on SVM for anomaly dete
tion in intrusiondete
tionDi�erent authors [3,4,5℄ have used support ve
tor ma
hines for novelty dete
tionin the intrusion dete
tion �eld. The work of Eskin et al. [3℄ is one of the �rston the subje
t. They propose a geometri
al framework to improve the perfor-man
e of di�erent kinds of unsupervised learning algorithms among whi
h SVMis found. Laskov et al.[5℄ used the same geometri
al framework presented byEskin [3℄ and they provide a modi�
ation to SVM for anomaly dete
tion whi
houtperforms traditional variants. Both works use the KDD99 DARPA datasetfor training and evaluating their approa
h.The work of Li et al. [4℄ propose an improvement on SVM for novelty dete
-tion applied to the intrusion dete
tion �eld. The idea is basi
ally to extendS
holkopf's [11℄ hyperplane-to-origin approa
h. In their arti
le, they assume thatnot only the origin lies in the se
ond 
lass but also that all data points 
loseenough to the origin are to be 
onsidered as outliers or anomaly data points.For the evaluation pro
ess of their approa
h the authors use the 1999 DARPAdataset.



It seems 
lear that all these authors are aware of the limitations of the di�erentSVM approa
hes for anomalies dete
tion. As mentioned by Eskin [3℄, these al-gorithms will work well under the assumption that the number of normal tra�
instan
es vastly outnumbers the number of anomalies. Moreover, in the experi-ments 
ondu
ted, the authors assume that a high unbalan
e in 
lass distributionis a 
ommon feature in network tra�
 and they have altered the original datasets to �t into this assumption. Unfortunately in pra
ti
e, this assumption isnot always true. There are many situations in whi
h for spe
i�
 periods of time,the presen
e of intrusions vastly ex
eeds the number of normal tra�
 instan
es.For instan
e, when a new vulnerability is dis
overed and it has been widelyannoun
ed, it is possible to �nd atta
ks exploiting these vulnerability en
om-passing a extremely high per
entage of the network tra�
. Thus, it seems thatanomalies in network tra�
 have a bursty behavior. This 
an be observed in theDARPA dataset, where the per
entage of anomalous tra�
 found in some weeksis less than 0.5% but in some other weeks the per
entage raise to 70%. However,this dataset may not be representative of the a
tual unbalan
ed in a produ
tionenvironment. The authors are unaware of a thorough study that 
on�rms these
laims.Preliminary experiments 
ondu
ted on the 1998 DARPA data set by the authors[13℄ 
on�rms a poor performan
e for SVM for anomalies dete
tion when dataset does not present a highly unbalan
e 
lass distribution.On the other hand, the results obtained when SVM algorithms were trainedusing a highly unbalan
ed 
lass distribution were similar to those reported byEskin [3℄, as expe
ted.In a real tra�
 situation, it seems 
lear that it is not always possible to guaranteethe required unbalan
e in 
lass distribution for training sets, as needed by SVMapproa
hes. A possible solution is to rely on experts for removing known atta
ksfrom the training set, until the desired unbalan
e is rea
hed. This, however,would be an extremely expensive and tedious task. More interesting is the ideaof using an autonomous labeling tool for removing known atta
ks.3 Proposed approa
h: Autonomous labeling of normaltra�
 using SNORT.For dealing with non-unbalan
ed 
lass distribution situation an autonomous la-beling approa
h is proposed. The idea is to use the atta
ks re
ognized by SNORT,a misuse signature-based IDS, to redu
e the number of atta
ks in the trainingdata set, and then use this redu
ed version of the data set to train a SVM foranomaly dete
tion algorithm. The assumption is that after the atta
ks re
og-nized by SNORT are removed from the training data set, the number of normaltra�
 instan
es will be su�
iently larger than the number of atta
ks. This way,
lass distribution be
omes unbalan
ed or at least 
loser to the suggested unbal-an
e.



SNORT [7℄ is a light and fast intrusion dete
tion system developed by MartinRoes
h in 1999. Over the past years, its popularity grew 
onsiderably, be
om-ing a de-fa
to standard in the se
urity network �eld. SNORT is 
omposed byseveral fast pattern mat
hing algorithms and a very 
omplete and updated ruledatabase. However, SNORT is far from being a 
omplete solution to the intrusionproblem. As any other misuse signature-based IDS, SNORT fails to re
ognizeatta
ks whi
h are not des
ribe by a rule of its database. Another well knownproblem is that in many 
ases, SNORT 
an raise an extremely high false alarmrate, leading to produ
tion of di�erent approa
hes for redu
ing SNORT falsealarm [14℄.The main hypothesis of this work is that although SNORT presents some draw-ba
ks for 
lassi�
ation, it still 
an be useful for labeling normal tra�
, produ
ingpotentially better results of SVM for anomaly dete
tion.4 ExperimentsA number of experiments were 
ondu
ted in order to 
ompare the behavior ofthe SNORT-based SVM anomaly dete
tion approa
h, denoted as SbSVM withthe standard SVM approa
h for anomaly dete
tion.4.1 Data set des
riptionThe experiments were 
ondu
ted over �ve weeks of the 1998 DARPA data set[6℄, widely used for intrusion dete
tion evaluation.A total of six �elds from a network tra�
 instan
e were sele
ted for des
ribingthe input data: 
onne
tion time, proto
ol type, sour
e port, destination port,sour
e IP address and destination IP address. Sele
ted �elds are representeda

ording to Table 1 resulting a total of 14 attributes used for training SVM foranomaly dete
tion alternatives.Table 1. Features representationFeature SizeConne
tion time 3Proto
ol Type 1Sour
e port 1Destination port 1Sour
e IP address 4Destination IP address 4To improve SVM performan
e and to avoid possible numeri
al problems, thefeatures are normalized between the interval [0,1℄ as suggested in [15℄.



4.2 Standard performan
e metri
s for IDS evaluationStandard performan
e metri
s for IDS evaluation are used for 
omparing thedi�erent approa
hes dis
ussed. These metri
s 
orrespond to a

ura
y, atta
kdete
tion rate and false alarm rateA

ura
y is 
omputed as the ratio between the number of 
orre
tly 
lassi�edtra�
 instan
es and the total number of tra�
 instan
es. Dete
tion rate is 
om-puted as the ratio between the number of 
orre
tly dete
ted atta
ks and the totalnumber of atta
ks. Finally, false alarm rate is 
omputed as the ratio betweenthe number of normal 
onne
tions that are in
orre
tly 
lassi�ed as atta
ks andthe total number of normal 
onne
tions.4.3 Standalone SNORT evaluationIn this se
tion, the 
lassi�
ation performan
e (in normal tra�
 and atta
ks) ofa standalone SNORT is evaluated over the 
omplete DARPA data set. From atotal of thousands of rules in the SNORT rule-base, only 35 mat
hed against thewhole 5 weeks of the DARPA data set. Thus, for improving further 
omputationsthe unmat
hing rules were removed from SNORT's rule database.It is important to investigate the in�uen
e the size of SNORT's rule base has onthe a

ura
y, dete
tion rate and false alarm of SNORT against the DARPA dataset. Thus, experiments were 
ondu
ted using a SNORT 
lassi�er 
ontaining arule-base of sizes 5, 10, 25, 30, 32 and 35, the total of the available rules. Forstatisti
al signi�
an
e, for ea
h rule-base size, a total of 10 subsets of that sizewere 
onsidered, and for ea
h su
h subset, 24 repetitions of the experiments were
ondu
ted ea
h on a randomly sele
ted 0.5% subset of the DARPA data set.The averaged results and the standard deviation are presented in Fig 2. It 
anbe observed that as the size of the rule database in
reases, SNORT's a

ura
yand the atta
k dete
tion rate in
reases as well. As expe
ted the best resultswere a
hieved when SNORT uses the 
omplete rule database. In that 
ase theaverage a

ura
y obtained is 59%, the dete
tion atta
k rate is 49%, and a veryhigh false alarm rate of 29% is observed as well. In some 
ases, results present asigni�
ant varian
e. This behavior 
an be explained by the atta
ks distributionin the DARPA data set. The DARPA dataset 
ontains a signi�
ative numberof atta
ks of the type whi
h 
an't be dete
ted by SNORT. This situation wasalready reported in a previous work by Brugger et al. [16℄.The obtained results seem to indi
ate SNORT performan
e on the DARPA dataset is not very a

urate. However, atta
k dete
tion rate presented by SNORTfor rule base sizes greater than 25 
an still be useful for labeling a signi�
ativeamount of normal tra�
. Therefore, it is expe
ted that in those 
ases SbSVM
an bring 
lass distribution 
loser to the unbalan
e required by SVM algorithmsfor anomaly dete
tion.



Fig. 2. In�uen
e of the number of rules used by SNORT on the DARPA data set4.4 Evaluation of the SNORT-based autonomous labeling for SVManomaly dete
tionIn order to evaluate the performan
e of the proposed SbSVM approa
h, theobtained results are 
ompared with the ones 
omputed using standard SVM.The SVM implementation used for these experiments is an extension of thelibsvm [17℄ that support the hypersphere formulation [18℄. For these experiments,a RBF kernel with γ = 8 was sele
ted and the 
hosen value for the penaltyfa
tor ν was 0.27. These values were obtained following the grid sear
h pro
eduredes
ribed in [15℄.For training purposes, 1% subset of the DARPA data set was used, whereasanother 0.5% subset was used for testing purposes, following standard ratiosused in 
lassi�
ation problems. This pro
ess was repeated 24 times for di�erentrandomly and uniformly sele
ted subsets of DARPA.The training pro
ess of the standard SVM approa
h uses the whole 1% in
ludingboth normal and anomalous tra�
. In the 
ase of the SbSVM approa
h, instead,atta
ks re
ognized by SNORT are removed.It seems interesting to investigate the in�uen
e of the rule database size used bySNORT on the SVM for anomaly dete
tion approa
h. Thus, as in the previousexperiment, rule database of di�erent size were sele
ted. Finally, to improvestatisti
s estimators, ea
h time a new 0.5% subset was sele
ted for evaluation,the 
omplete rule set was shu�e for a total of ten times.The averages obtained are shown in Fig. 3. For 
omparison purposes obtainedresults by standalone SNORT (previously dis
ussed in sub. 4.3) are also in
luded.The average a

ura
y a
hieved by standard SVM approa
h was 30%. This is justa minor di�eren
e 
ompared to the 34% a

ura
y obtained when the trainingdata set was labeled by SNORT with a rule database size of 5. The majordi�eren
es 
an be observed when more than 25 rules are present at the SNORTdatabase. In those 
ases, the average a

ura
y obtained is 63%, 68% and 72% for25, 30 and 32 rules, respe
tively. Finally, when the training data set was labeledby the 
omplete rule database, a 77% a

ura
y was a
hieved.



Fig. 3. A

ura
y obtained by the SbSVM approa
h 
ompared to standard SVM foranomalies dete
tion and standalone SNORT.In Fig. 4 results for atta
k dete
tion rate are shown. The use of SbSVM approa
hshows signi�
ant improvement over the standard SVM. When SNORT uses a ruledatabase size of 5, an average 13% atta
k dete
tion rate is obtained, against a6% dete
tion rate of standard SVM.
Fig. 4. Dete
tion atta
k rate obtained by the SbSVM approa
h 
ompared to standardSVM for anomalies dete
tion and standalone SNORT.Moreover, the atta
k dete
tion rate in
reases as the rule database size in
reases,with a maximum atta
k dete
tion rate of 88% obtained when the 
omplete ruledatabase was used.Results for false alarm rate are shown in Fig. 5. As 
an be observed the falsealarm rate obtained by the standard SVM variant was an average 40%. While inthe 
ases where SbSVM was used, for almost any 
ase, the average false alarmrate de
reased (ex
eption for 5 rules). When the 
omplete rule base is used afalse alarm rate of 35% is a
hieved.Finally, when 
omparing SbSVM performan
e against results obtained by stan-dalone SNORT (shown in Fig. 2), SbSVM shows better a

ura
y in all 
asesex
ept when SNORT uses a rule base size of 5 and 10. More remarkable are theresults obtained for atta
k dete
tion rate. In every 
ase, SbSVM shows majorperforman
e improvements over standalone SNORT. In the 
ase when SNORTuses the 
omplete rule base, atta
ks re
ognized by SbSVM are 80% more than



Fig. 5. False alarm rates obtained by the SbSVM approa
h 
ompared to standard SVMfor anomalies dete
tion and standalone SNORT.the ones re
ognized by standalone SNORT. For SbSVM a 34% of false alarmrate has been obtained instead of a 29% for standalone SNORT.5 Con
lusionsThe performan
e obtained by standard SVM variant based on the hypersphereformulation on the 1998 DARPA dataset seems to 
on�rm what has been alreadydis
ussed in se
tion 2.2. When a high number of atta
ks are in
luded in thedataset, SVM algorithms for anomaly dete
tion are not suitable for �nding ana

urate domain des
ription. Thus, a highly unbalan
ed 
lass distribution isneeded in the dataset to a
hieve a proper performan
e.The use of SNORT as an autonomous labeling tool appears to be a promis-ing strategy to over
ome this issue. Although in some 
ases SNORT exhibitsa low atta
k dete
tion rate, this situation has not prevented important perfor-man
e improvements. For instan
e, a

ura
y is about of 50% better than theone obtained using standard SVM approa
h. Moreover, the atta
k dete
tion are
omputed with the SbSVM approa
h shows an improvement of more than tentimes 
ompared with the one obtained with standard SVM.The false alarm rate was also improved with proposed approa
h, although theimprovements were not as signi�
ant as in the other performan
e metri
s. The34% false alarm rate obtained when the 
omplete rule dataset is used by SNORT
ould be 
onsidered high for pra
ti
al 
ases. This high false alarm rate value 
anbe explained by the high false alarm rate obtained by standalone SNORT on theDARPA dataset.The obtained results have shown the autonomous labeling approa
h using SNORThas improved not only SVM algorithms for anomaly dete
tion but also the stan-dalone SNORT.The performan
e of the SbSVM approa
h in real tra�
 situations still remainsunknown. Consequentely, experiments will be 
arried out to over
ome this issuein the future.
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