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2 Dept. Sistemas de Informaión, FRM, UTN, Mendoza, Argentinafbromberg@frm.utn.edu.arAbstrat. In the past years, several support vetor mahines anomalydetetion approahes have been proposed in the network intrusion dete-tion �eld. The main advantage of these approahes is that they an har-aterize normal tra� when trained using a data set ontaining not onlynormal tra� but also possible attaks. Unfortunately, these algorithmsseem to be aurate only when the normal tra� vastly outnumbers thenumbers of attaks or anomalies present in the dataset.This work presents an approah for autonomous labeling of normal traf-� as a way of dealing with situations where lass distributions do notpresent the required unbalane. The autonomous labeling proess is madeby SNORT, a misuse-based intrusion detetion system. Experiments on-duted on the 1998 DARPA dataset show the proposed autonomous la-beling approah not only outperforms existing SVM alternatives but alsoobtains signi�ant improvement over SNORT itself.1 IntrodutionIn the past years network seurity has beome a serious problem. In the earlyyears of the Internet, the set of network protools that support it worked rea-sonable well. However as the Internet grew, underlying seurity faults in thoseprotools were observed. Seurity faults in protools suh as ARP, TCP, TEL-NET, SMTP and FTP have aused most of known attaks against network dataon�dentiality, authentiity and availability. Currently all of these problems havebeen �xed, however new ways to develop attaks are disovered everyday.Network managers must be well prepared in order to prevent network attaks,i.e., be informed about new vulnerabilities. For several years, intrusion detetionsystems (IDS) provided an invaluable help to network managers, beoming anintegral part of any network seurity pakage.In the intrusion detetion �eld two di�erent approahes an be observed: mis-use detetion and anomaly detetion [1℄. The idea behind misuse detetion isto represent attaks in a form of a pattern or a signature in suh a way that



even variations of these attaks an be deteted. Based on these signatures, thisapproah detets attaks through a large set of rules desribing every known at-tak. The main disadvantage of the signature based approah is its di�ulty fordeteting unknown attaks. The main idea of the anomaly detetion approahis to build a statistial model for desribing normal tra�. Then, any deviationfrom this model an be onsidered an anomaly, and reognized as an attak.Notie that when this approah is used, it is theoretially possible to detet un-known attaks, although in some ases, this approah an lead to a high falsepositive rate. This apaity to detet unknown attaks has been the ause ofthe inreasing interest in developing new tehniques to build models based onnormal tra� behavior in the past years.The anomaly detetion approah has been a very ative researh topi insidethe mahine learning ommunity and it has been the subjet of many artilesover the past years. One of the most suessful approahes is based on theidea of olleting data only from network normal operation. Then, based onthis data desribing normality, any deviation would be onsidered an anomaly .Di�erent tehniques were proposed for haraterizing the onept of normality[2℄. In pratie, however, it is di�ult to obtain lean data to implement theseapproahes. Verifying that no attaks are present in the training data an be anextremely tedious task, and for large samples this is simply infeasible. On theother hand, if the data ontaining attaks is assumed lean, intrusions similarto the ones present in the training data will be aepted as normal patterns,resulting in an inrement in the number of misdetetions.Reently, di�erent authors proposed the use of support vetor mahines (SVM)for novelty detetion [3,4,5℄ as an alternative approah for intrusion detetion.One of the major advantages of this approah is that it is suitable for handling atraining data set with not only normal tra� but also anomalies (i.e., attaks).Unfortunately, as was notied by Eskin in [3℄, this works under the assumptionthat the number of normal tra� instanes vastly outnumbers the number ofanomalies, with a proportion of at least 98.5% of the training set being normaltra�.This last assumption is not neessarily true in every situation. It is possible to�nd periods of time where the number of attaks present in tra� ould easilyoutnumber normal tra� instanes. This situation an also be observed in om-monly used datasets for intrusion detetion evaluation suh as the 1998 DARPAdataset [6℄. This dataset was provided by DARPA to the mahine learning om-munity in the ontext of the 1999 KDD Cup for evaluating di�erent IDS ap-proahes. Sine its publiation it has been widely used by many IDS researhersover the years. Interestingly, the 1998 DARPA lass distribution does not ex-hibit the required unbalane. Moreover, it has many days or even weeks wherethe perentage of attaks raises up to 50%.To deal with this and other unbalaned lass distribution situations a novelapproah is proposed. The idea is using SNORT [7℄, a very well known misusesignature-based IDS system, as an autonomous tool for labeling normal tra�.



The main hypothesis is that using SNORT may possibly redue the presene ofattaks in the tra� instanes used for training, and onsequently improving theperformane of SVM for anomaly detetion.The rest of the work is organized as follows: in setion 2 main harateristis ofSVM for anomaly detetion are brie�y disussed, together with its appliationto the tra� network detetion �eld. Then, in setion 3, a new approah forautonomous labeling normal tra� is presented. In setion 4 a set of experi-ments are onduted on the 1998 DARPA dataset for evaluating performane ofthe disussed approahes. Finally, onlusions and future work are provided insetion 5.2 SVM for anomaly detetionSine their introdution in the mid-1990s, support vetor mahines [8,9℄ havebeen widely used, being the subjet of many artiles on lassi�ation problems.SVM for anomaly detetion is an extension of the ore SVM ideas for lassi-�ation problems. Traditional SVM approahes for lassi�ation uses as inputtraining data onsisting of a mixture of data labeled by both lasses. In theintrusion detetion problem this would onsist of data labeled both as attakand non-attak. The model onstruted by these approahes disriminates theinput spae in two in�nite regions, one per lass, usually using a hyperplane. Inontrast, the main idea in SVM for anomaly detetion [10,11℄ is to use as inputa desription of only the normal lass of objets (non-attak in IDS), assum-ing the rest as anomalies (attaks). The model onstruted by this approahdisriminates the input spae in a �nite region ontaining the normal objets,while all the rest of the (in�nite) spae is assumed to ontain the anomalies.The SVM for anomaly detetion variants appear in the literature of intrusiondetetion with di�erent names, whih ould led to some onfusion. In someases they are referened as SVM one-lass algorithms. SVM for non supervisedlearning is another widely used name by some authors. Although, all of thesenames desribe important harateristis of this kind of algorithms, in this workthe term SVM for anomaly detetion will be preferred.Two major approahes were proposed to extend SVM for anomaly detetionproblems. One approah, proposed by Tax and Duin [10℄, is based on the idea of�nding an hypersphere with enter c and minimal radius R ontaining most ofthe normal data, disriminating all other data not in the sphere as anomalies. Asin standard SVM approahes, the disriminating surfae (the sphere), as well asthe data, may be mapped into a feature spae by some kernel funtion. Anotherapproah proposed by Sholkopf [11℄ tries to separate the normal data pointsfrom the anomalies by �nding the hyperplane that is maximally distant from theorigin. When a RBF kernel is used, it was shown the two approahes onvergeto the same solution [12℄.



Due to spae restritions only a brief desription of Tax's approah is provided.For a desription of the hyperplane formulation the reader is referred to [11℄.2.1 SVM based on the hypersphere formulationThe sphere formulation has an intuitive geometri idea: the normal data anbe onisely desribed by a sphere enlosing the data in some high-dimensionalfeature spae. A graphial example of this an be observed in Fig. 1. The preseneof noise, i.e., inorretly labeled training data, an be solved by introduingslak variables. The use of slak variables allow for some normal data pointsnot inluded in the sphere desription. Although, this an led to a number ofanomalies lying within the sphere as well.

Fig. 1. The geometri representation of the sphere formulationThe task to minimize the volume of the sphere an be mathematially desribedas:
min
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(1)The enter c of the hypersphere lies within the high-dimensional feature spae F .The non-negative slak variables ξi allow for some data points to lie outside thehypersphere. The onstant ν gives the trade-o� between the two terms: volumeof the sphere and the number of target objets rejeted.Sine the enter c lies within the high-dimensional feature spae, it is not possibleto diretly solve the primal problem (1) of the sphere formulation. The followingdual problem where all the variables have low dimensions is solved instead:
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(2)The mapping of datapoints to a high-dimensional feature spae is de�ned bythe kernel funtion k(xi, xj), a generalization of the inner produt in the featurespae. Commonly used kernels are linear, sigmoid, polynomial, among others.One of the most suessful kernels used in the �eld of network tra� anomalydetetion is the radial basis funtion (RBF), shown in following equation:
k(xi, xj) = e−γ(xi−xj)

2 (3)Where γ = 1
σ2 . Notie the parameter γ gives the width, or spread, of the kernelfuntion.The lassi�ation between normal and anomalous tra� is done through thedeision funtion, omputed as follows:
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αik(xi, xi) − k(x, x)) (4)The radius R2 plays the role of a threshold, and it an be omputed by equatingthe expression under the sgn to zero for any support vetor.2.2 Previous work on SVM for anomaly detetion in intrusiondetetionDi�erent authors [3,4,5℄ have used support vetor mahines for novelty detetionin the intrusion detetion �eld. The work of Eskin et al. [3℄ is one of the �rston the subjet. They propose a geometrial framework to improve the perfor-mane of di�erent kinds of unsupervised learning algorithms among whih SVMis found. Laskov et al.[5℄ used the same geometrial framework presented byEskin [3℄ and they provide a modi�ation to SVM for anomaly detetion whihoutperforms traditional variants. Both works use the KDD99 DARPA datasetfor training and evaluating their approah.The work of Li et al. [4℄ propose an improvement on SVM for novelty dete-tion applied to the intrusion detetion �eld. The idea is basially to extendSholkopf's [11℄ hyperplane-to-origin approah. In their artile, they assume thatnot only the origin lies in the seond lass but also that all data points loseenough to the origin are to be onsidered as outliers or anomaly data points.For the evaluation proess of their approah the authors use the 1999 DARPAdataset.



It seems lear that all these authors are aware of the limitations of the di�erentSVM approahes for anomalies detetion. As mentioned by Eskin [3℄, these al-gorithms will work well under the assumption that the number of normal tra�instanes vastly outnumbers the number of anomalies. Moreover, in the experi-ments onduted, the authors assume that a high unbalane in lass distributionis a ommon feature in network tra� and they have altered the original datasets to �t into this assumption. Unfortunately in pratie, this assumption isnot always true. There are many situations in whih for spei� periods of time,the presene of intrusions vastly exeeds the number of normal tra� instanes.For instane, when a new vulnerability is disovered and it has been widelyannouned, it is possible to �nd attaks exploiting these vulnerability enom-passing a extremely high perentage of the network tra�. Thus, it seems thatanomalies in network tra� have a bursty behavior. This an be observed in theDARPA dataset, where the perentage of anomalous tra� found in some weeksis less than 0.5% but in some other weeks the perentage raise to 70%. However,this dataset may not be representative of the atual unbalaned in a produtionenvironment. The authors are unaware of a thorough study that on�rms theselaims.Preliminary experiments onduted on the 1998 DARPA data set by the authors[13℄ on�rms a poor performane for SVM for anomalies detetion when dataset does not present a highly unbalane lass distribution.On the other hand, the results obtained when SVM algorithms were trainedusing a highly unbalaned lass distribution were similar to those reported byEskin [3℄, as expeted.In a real tra� situation, it seems lear that it is not always possible to guaranteethe required unbalane in lass distribution for training sets, as needed by SVMapproahes. A possible solution is to rely on experts for removing known attaksfrom the training set, until the desired unbalane is reahed. This, however,would be an extremely expensive and tedious task. More interesting is the ideaof using an autonomous labeling tool for removing known attaks.3 Proposed approah: Autonomous labeling of normaltra� using SNORT.For dealing with non-unbalaned lass distribution situation an autonomous la-beling approah is proposed. The idea is to use the attaks reognized by SNORT,a misuse signature-based IDS, to redue the number of attaks in the trainingdata set, and then use this redued version of the data set to train a SVM foranomaly detetion algorithm. The assumption is that after the attaks reog-nized by SNORT are removed from the training data set, the number of normaltra� instanes will be su�iently larger than the number of attaks. This way,lass distribution beomes unbalaned or at least loser to the suggested unbal-ane.



SNORT [7℄ is a light and fast intrusion detetion system developed by MartinRoesh in 1999. Over the past years, its popularity grew onsiderably, beom-ing a de-fato standard in the seurity network �eld. SNORT is omposed byseveral fast pattern mathing algorithms and a very omplete and updated ruledatabase. However, SNORT is far from being a omplete solution to the intrusionproblem. As any other misuse signature-based IDS, SNORT fails to reognizeattaks whih are not desribe by a rule of its database. Another well knownproblem is that in many ases, SNORT an raise an extremely high false alarmrate, leading to prodution of di�erent approahes for reduing SNORT falsealarm [14℄.The main hypothesis of this work is that although SNORT presents some draw-baks for lassi�ation, it still an be useful for labeling normal tra�, produingpotentially better results of SVM for anomaly detetion.4 ExperimentsA number of experiments were onduted in order to ompare the behavior ofthe SNORT-based SVM anomaly detetion approah, denoted as SbSVM withthe standard SVM approah for anomaly detetion.4.1 Data set desriptionThe experiments were onduted over �ve weeks of the 1998 DARPA data set[6℄, widely used for intrusion detetion evaluation.A total of six �elds from a network tra� instane were seleted for desribingthe input data: onnetion time, protool type, soure port, destination port,soure IP address and destination IP address. Seleted �elds are representedaording to Table 1 resulting a total of 14 attributes used for training SVM foranomaly detetion alternatives.Table 1. Features representationFeature SizeConnetion time 3Protool Type 1Soure port 1Destination port 1Soure IP address 4Destination IP address 4To improve SVM performane and to avoid possible numerial problems, thefeatures are normalized between the interval [0,1℄ as suggested in [15℄.



4.2 Standard performane metris for IDS evaluationStandard performane metris for IDS evaluation are used for omparing thedi�erent approahes disussed. These metris orrespond to auray, attakdetetion rate and false alarm rateAuray is omputed as the ratio between the number of orretly lassi�edtra� instanes and the total number of tra� instanes. Detetion rate is om-puted as the ratio between the number of orretly deteted attaks and the totalnumber of attaks. Finally, false alarm rate is omputed as the ratio betweenthe number of normal onnetions that are inorretly lassi�ed as attaks andthe total number of normal onnetions.4.3 Standalone SNORT evaluationIn this setion, the lassi�ation performane (in normal tra� and attaks) ofa standalone SNORT is evaluated over the omplete DARPA data set. From atotal of thousands of rules in the SNORT rule-base, only 35 mathed against thewhole 5 weeks of the DARPA data set. Thus, for improving further omputationsthe unmathing rules were removed from SNORT's rule database.It is important to investigate the in�uene the size of SNORT's rule base has onthe auray, detetion rate and false alarm of SNORT against the DARPA dataset. Thus, experiments were onduted using a SNORT lassi�er ontaining arule-base of sizes 5, 10, 25, 30, 32 and 35, the total of the available rules. Forstatistial signi�ane, for eah rule-base size, a total of 10 subsets of that sizewere onsidered, and for eah suh subset, 24 repetitions of the experiments wereonduted eah on a randomly seleted 0.5% subset of the DARPA data set.The averaged results and the standard deviation are presented in Fig 2. It anbe observed that as the size of the rule database inreases, SNORT's aurayand the attak detetion rate inreases as well. As expeted the best resultswere ahieved when SNORT uses the omplete rule database. In that ase theaverage auray obtained is 59%, the detetion attak rate is 49%, and a veryhigh false alarm rate of 29% is observed as well. In some ases, results present asigni�ant variane. This behavior an be explained by the attaks distributionin the DARPA data set. The DARPA dataset ontains a signi�ative numberof attaks of the type whih an't be deteted by SNORT. This situation wasalready reported in a previous work by Brugger et al. [16℄.The obtained results seem to indiate SNORT performane on the DARPA dataset is not very aurate. However, attak detetion rate presented by SNORTfor rule base sizes greater than 25 an still be useful for labeling a signi�ativeamount of normal tra�. Therefore, it is expeted that in those ases SbSVMan bring lass distribution loser to the unbalane required by SVM algorithmsfor anomaly detetion.



Fig. 2. In�uene of the number of rules used by SNORT on the DARPA data set4.4 Evaluation of the SNORT-based autonomous labeling for SVManomaly detetionIn order to evaluate the performane of the proposed SbSVM approah, theobtained results are ompared with the ones omputed using standard SVM.The SVM implementation used for these experiments is an extension of thelibsvm [17℄ that support the hypersphere formulation [18℄. For these experiments,a RBF kernel with γ = 8 was seleted and the hosen value for the penaltyfator ν was 0.27. These values were obtained following the grid searh proeduredesribed in [15℄.For training purposes, 1% subset of the DARPA data set was used, whereasanother 0.5% subset was used for testing purposes, following standard ratiosused in lassi�ation problems. This proess was repeated 24 times for di�erentrandomly and uniformly seleted subsets of DARPA.The training proess of the standard SVM approah uses the whole 1% inludingboth normal and anomalous tra�. In the ase of the SbSVM approah, instead,attaks reognized by SNORT are removed.It seems interesting to investigate the in�uene of the rule database size used bySNORT on the SVM for anomaly detetion approah. Thus, as in the previousexperiment, rule database of di�erent size were seleted. Finally, to improvestatistis estimators, eah time a new 0.5% subset was seleted for evaluation,the omplete rule set was shu�e for a total of ten times.The averages obtained are shown in Fig. 3. For omparison purposes obtainedresults by standalone SNORT (previously disussed in sub. 4.3) are also inluded.The average auray ahieved by standard SVM approah was 30%. This is justa minor di�erene ompared to the 34% auray obtained when the trainingdata set was labeled by SNORT with a rule database size of 5. The majordi�erenes an be observed when more than 25 rules are present at the SNORTdatabase. In those ases, the average auray obtained is 63%, 68% and 72% for25, 30 and 32 rules, respetively. Finally, when the training data set was labeledby the omplete rule database, a 77% auray was ahieved.



Fig. 3. Auray obtained by the SbSVM approah ompared to standard SVM foranomalies detetion and standalone SNORT.In Fig. 4 results for attak detetion rate are shown. The use of SbSVM approahshows signi�ant improvement over the standard SVM. When SNORT uses a ruledatabase size of 5, an average 13% attak detetion rate is obtained, against a6% detetion rate of standard SVM.
Fig. 4. Detetion attak rate obtained by the SbSVM approah ompared to standardSVM for anomalies detetion and standalone SNORT.Moreover, the attak detetion rate inreases as the rule database size inreases,with a maximum attak detetion rate of 88% obtained when the omplete ruledatabase was used.Results for false alarm rate are shown in Fig. 5. As an be observed the falsealarm rate obtained by the standard SVM variant was an average 40%. While inthe ases where SbSVM was used, for almost any ase, the average false alarmrate dereased (exeption for 5 rules). When the omplete rule base is used afalse alarm rate of 35% is ahieved.Finally, when omparing SbSVM performane against results obtained by stan-dalone SNORT (shown in Fig. 2), SbSVM shows better auray in all asesexept when SNORT uses a rule base size of 5 and 10. More remarkable are theresults obtained for attak detetion rate. In every ase, SbSVM shows majorperformane improvements over standalone SNORT. In the ase when SNORTuses the omplete rule base, attaks reognized by SbSVM are 80% more than



Fig. 5. False alarm rates obtained by the SbSVM approah ompared to standard SVMfor anomalies detetion and standalone SNORT.the ones reognized by standalone SNORT. For SbSVM a 34% of false alarmrate has been obtained instead of a 29% for standalone SNORT.5 ConlusionsThe performane obtained by standard SVM variant based on the hypersphereformulation on the 1998 DARPA dataset seems to on�rm what has been alreadydisussed in setion 2.2. When a high number of attaks are inluded in thedataset, SVM algorithms for anomaly detetion are not suitable for �nding anaurate domain desription. Thus, a highly unbalaned lass distribution isneeded in the dataset to ahieve a proper performane.The use of SNORT as an autonomous labeling tool appears to be a promis-ing strategy to overome this issue. Although in some ases SNORT exhibitsa low attak detetion rate, this situation has not prevented important perfor-mane improvements. For instane, auray is about of 50% better than theone obtained using standard SVM approah. Moreover, the attak detetion areomputed with the SbSVM approah shows an improvement of more than tentimes ompared with the one obtained with standard SVM.The false alarm rate was also improved with proposed approah, although theimprovements were not as signi�ant as in the other performane metris. The34% false alarm rate obtained when the omplete rule dataset is used by SNORTould be onsidered high for pratial ases. This high false alarm rate value anbe explained by the high false alarm rate obtained by standalone SNORT on theDARPA dataset.The obtained results have shown the autonomous labeling approah using SNORThas improved not only SVM algorithms for anomaly detetion but also the stan-dalone SNORT.The performane of the SbSVM approah in real tra� situations still remainsunknown. Consequentely, experiments will be arried out to overome this issuein the future.
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