
Journal of Machine Learning Research 10 (2009) 301-340 Submitted 4/08; Revised 1/09; Published 2/09

Improving the Reliability of Causal Discovery from Small Data Sets
Using Argumentation

Facundo Bromberg BROMBERG@CS.IASTATE.EDU

Dimitris Margaritis DMARG@CS.IASTATE.EDU

Dept. of Computer Science
Iowa State University
Ames, IA 50011

Editor: Constantin Aliferis

Abstract
We address the problem of improving the reliability of independence-based causal discovery al-
gorithms that results from the execution of statistical independence tests on small data sets, which
typically have low reliability. We model the problem as a knowledge base containing a set of inde-
pendence facts that are related through Pearl’s well-known axioms. Statistical tests on finite data
sets may result in errors in these tests and inconsistencies in the knowledge base. We resolve these
inconsistencies through the use of an instance of the class of defeasible logics called argumentation,
augmented with a preference function, that is used to reason about and possibly correct errors in
these tests. This results in a more robust conditional independence test, called an argumentative
independence test. Our experimental evaluation shows clear positive improvements in the accuracy
of argumentative over purely statistical tests. We also demonstrate significant improvements on the
accuracy of causal structure discovery from the outcomes of independence tests both on sampled
data from randomly generated causal models and on real-world data sets.
Keywords: independence-based causal discovery, causal Bayesian networks, structure learning,
argumentation, reliability improvement

1. Introduction and Motivation

Directed graphical models, also called Bayesian networks, can be used to represent the probability
distribution of a domain. This makes them a useful and important tool for machine learning where
a common task is inference, that is, predicting the probability distribution of a variable of interest
given some other knowledge, usually in the form of values of other variables in the domain. An
additional use of Bayesian networks comes by augmenting them with causal semantics that repre-
sent cause and effect relationships in the domain. The resulting networks are called causal. An
important problem is inferring the structure of these networks, a process that is sometimes called
causal discovery, which can provide insights into the underlying data generation process.

Two major classes of algorithms exist for learning the structure of Bayesian networks. One
class contains so-called score-based methods, which learn the structure by conducting a search in
the space of all structures in an attempt to find the structure of maximum score. This score is usually
penalized log-likelihood, for example, the Bayesian Information Criterion (BIC) or the (equivalent)
Minimum Description Length (MDL). A second class of algorithms works by exploiting the fact
that a causal Bayesian network implies the existence of a set of conditional independence statements
between sets of domain variables. Algorithms in this class use the outcomes of a number of condi-

c©2009 Facundo Bromberg and Dimitris Margaritis.

BROMBERG AND MARGARITIS

tional independences to constrain the set of possible structures consistent with these to a singleton
(if possible) and infer that structure as the only possible one. As such they are called constraint-
based or independence-based algorithms. In this paper we address open problems related to the
latter class of algorithms.

It is well-known that independence-based algorithms have several shortcomings. A major one
has to do with the effect that unreliable independence information has on the their output. In general
such independence information comes from two sources: (a) a domain expert that can provide his
or her opinion on the validity of certain conditional independences among some of the variables,
sometimes with a degree of confidence attached to them, and/or (b) statistical tests of independence,
conducted on data gathered from the domain. As expert information is often costly and difficult to
obtain, (b) is the most commonly used option in practice. A problem that occurs frequently however
is that the data set available may be small. This may happen for various reasons: lack of subjects
to observe (e.g., in medical domains), an expensive data-gathering process, privacy concerns and
others. Unfortunately, the reliability of statistical tests significantly diminishes on small data sets.
For example, Cochran (1954) recommends that Pearson’s χ2 independence test be deemed unreli-
able if more than 20% of the cells of the test’s contingency table have an expected count of less
than 5 data points. Unreliable tests, besides producing errors in the resulting causal model struc-
ture, may also produce cascading errors due to the way that independence-based algorithms work:
their operation, including which test to evaluate next, typically depends on the outcomes of previous
ones. Thus a single error in a statistical test can be propagated by the subsequent choices of tests
to be performed by the algorithm, and finally when the edges are oriented. Therefore, an error in
a previous test may have large (negative) consequences in the resulting structure, a property that is
called instability in Spirtes et al. (2000). One possible method for addressing the effect of multiple
errors in the construction of a causal model through multiple independence tests is the Bonferroni
correction (Hochberg, 1988; Abdi, 2007), which works by dividing the type I error probability α of
each test by the number of such tests evaluated during the entire execution of the causal learning
algorithm. As a result, the collective type I error probability (of all tests evaluated) is α, that is, 0.05
typically. However, this may make the detection of true dependences harder, as now larger data sets
would be required to reach the adjusted confidence threshold of each test. The types of adjustments
that may be appropriate for each case to tests that may be dependent is an open problem and the
subject of current research in statistics (Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001; Storey, 2002).

In this paper we present and evaluate a number of methods for increasing the reliability of inde-
pendence tests for small data sets. A result of this is the improvement in reliability of independence-
based causal discovery algorithms that use these data sets, as we demonstrate in our experiments.
We model this setting as a knowledge base whose contents are propositions representing condi-
tional independences that may contain errors. Our main insight is to recognize that the outcomes
of independence tests are not themselves independent but are constrained by the outcomes of other
tests through Pearl’s well-known properties of the conditional independence relation (Pearl, 1988;
Dawid, 1979). These can therefore be seen as integrity constraints that can correct certain inconsis-
tent test outcomes, choosing instead the outcome that can be inferred by tests that do not result in
contradictions. We illustrate this by an example.

302

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Example 1. Consider an independence-based knowledge base that contains the following proposi-
tions, obtained through statistical tests on data.

({0}⊥⊥{1} | {2}) (1)

({0} 6⊥⊥{3} | {2}) (2)

({0}⊥⊥{3} | {1,2}) (3)

where (X⊥⊥Y | Z) denotes conditional independence of the set of variables X with Y conditional
on set Z, and (X 6⊥⊥Y | Z) denotes conditional dependence. Suppose that (3) is in fact wrong. Such
an error can be avoided if there exists a constraint involving these independence propositions. For
example, suppose that we also know that the following rule holds in the domain (this is an instance
of an application of the Contraction and Decomposition axioms, described later in Section 2):

({0}⊥⊥{1} | {2})∧ ({0} 6⊥⊥{3} | {2}) =⇒ ({0} 6⊥⊥{3} | {1,2}). (4)

Rule (4), together with independence proposition (1) and dependence proposition (2), contradict
independence proposition (3), resulting in an inconsistent knowledge base. If Rule (4) and propo-
sitions (1) and (2) are accepted, then proposition (3) must be rejected (and its value reversed),
correcting the error in this case. The framework presented in the rest of the paper provides a prin-
cipled approach for resolving such inconsistencies.

The situation described in the previous example, while simple, illustrates the general idea that
we will use in the rest of the paper: the set of independences and dependences used in a causal dis-
covery algorithm form a potentially inconsistent knowledge base, and making use of general rules,
derived from axioms and theorems that we know hold in the domain, helps us correct certain out-
comes of statistical tests. In this way we will be able to improve the reliability of causal discovery
algorithms that use them to derive causal models. To accomplish this we use the framework of argu-
mentation, which provides a sound and elegant way of resolving inconsistencies in such knowledge
bases, including ones that contain independences.

The rest of the paper is organized as follows. The next section introduces our notation and def-
initions. Section 3 presents the argumentation framework and its extension with preferences, and
describes our approach for applying it to represent and reason in knowledge bases containing inde-
pendence facts that may be inconsistent. Section 4 introduces the argumentative independence test,
implemented by the top-down algorithm introduced in Section 5. We then present an approximation
for the top-down algorithm in Section 6 that reduces its time complexity to polynomial. We experi-
mentally evaluate our approach in Section 7, and conclude with a summary and possible directions
of future research in Section 8. Most of the proofs are presented in detail in Appendices A and B,
which contain proofs for the computability (termination) and the validity (no AIT test can return
a dependence and an independence result at the same time) of AIT, respectively. Note that, as our
main goal in this paper is to address the problem of robust causal learning and not necessarily to
advance the theory of argumentation itself, our exposition in the rest of the paper is geared toward
causality theorists and practitioners. As this community may be unfamiliar with the theory and
methods of the argumentation framework, we have included a self-contained discussion that covers
the basic definitions and theorems of argumentation theory in some detail.

303

BROMBERG AND MARGARITIS

2. Notation and Preliminaries

In this work we denote random variables with capitals (e.g., X ,Y,Z) and sets of variables with bold
capitals (e.g., X,Y,Z). In particular, we denote by V = {1, . . . ,n} the set of all n variables in the
domain, naming the variables by their indices in V; for instance, we refer to the third variable in
V simply by 3. We assume that all variables in the domain are discrete following a multinomial
distribution or are continuous following a Gaussian distribution. We denote the data set by D and its
size (number of data points) by N. We use the notation (X⊥⊥Y |Z) to denote that the variables in set
X are (jointly) independent of those in Y conditional on the values of the variables in Z, for disjoint
sets of variables X, Y, and Z, while (X 6⊥⊥Y | Z) denotes conditional dependence. For the sake of
readability, we slightly abuse this notation and use (X⊥⊥Y | Z) as shorthand for ({X}⊥⊥{Y} | {Z}).

A Bayesian network (BN) is a directed graphical model which represents the joint probability
distribution over V. Each node in the graph represents one of the random variables in the domain.
The structure of the network implicitly represents a set of conditional independences on the domain
variables. Given the structure of a BN, the set of independences implied by it can be identified
by a process called d-separation (Pearl, 1988); the latter follows from the local Markov property
that states that each node in the network is conditionally independent of all its non-descendants in
the graph given its parents. All independences identified by d-separation are implied by the model
structure. If, in addition, all remaining triplets (X,Y,Z) correspond to dependencies, we say that the
BN is directed graph-isomorph (abbreviated DAG-isomorph) or simply causal (as defined by Pearl,
1988). The concept of DAG-isomorphism is equivalent to a property called Faithfulness in Spirtes
et al. (2000). A graph G is said to be faithful to some distribution if exactly those independences that
exist in the distribution and no others are returned by the process of d-separation on G. In this paper
we assume Faithfulness. For learning the structure of the Bayesian network of a domain we make
use of the PC algorithm (Spirtes et al., 2000), which is only able to correctly identify the structure
under the assumption of causal sufficiency. We therefore also assume causal sufficiency. A domain
is causally sufficient if it does not contain any hidden or latent variables.

As mentioned above, independence-based algorithms operate by conducting a series of condi-
tional independence queries. For these we assume that an independence-query oracle exists that
is able to provide such information. This approach can be viewed as an instance of the statistical
query oracle theory of Kearns and Vazirani (1994). In practice such an oracle does not exist, but
can be implemented approximately by a statistical test evaluated on the data set (for example, this
can be Pearson’s conditional independence χ2 (chi-square) test (Agresti, 2002), Wilk’s G2 test, a
mutual information test etc.). In this work we used Wilk’s G2 test (Agresti, 2002). To determine
conditional independence between two variables X and Y given a set Z from data, the statistical
test G2 (and many other independence tests based on hypothesis testing, for example, the χ2 test)
uses the values in the contingency table (a table containing the data point counts for each possible
combination of the variables that participate in the test) to compute a test statistic. For a given value
of the test statistic, the test then computes the likelihood of obtaining that or a more extreme value
by chance under the null hypothesis, which in our case is that the two variables are conditionally
independent. This likelihood, called the p-value of the test, is then returned. The p-value of a test
equals the probability of falsely rejecting the null hypothesis (independence). Assuming that the
p-value of a test is p(X ,Y | Z), the statistical test concludes independence if and only if p(X ,Y | Z)
is greater than a threshold α, that is,

(X⊥⊥Y | Z) ⇐⇒ p(X ,Y | Z) > α.

304

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Weak Union) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z∪W) (5)

(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)
(Intersection) (X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Composition) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z) =⇒ (X⊥⊥Y∪W | Z)

(Decomposition) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)
(Intersection) (X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)
(Weak Union) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z∪W) (6)

(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)
(Weak Transitivity) (X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ γ) =⇒ (X⊥⊥γ | Z) ∨ (γ⊥⊥Y | Z)

(Chordality) (α⊥⊥β | γ∪δ) ∧ (γ⊥⊥δ | α∪β) =⇒ (α⊥⊥β | γ) ∨ (α⊥⊥β | δ)

Common values in statistics for α are 0.05 and 0.01, corresponding to confidence thresholds (1−α)
of 0.95 and 0.99 respectively. The value 0.10 for α is also sometimes used, depending on the
application, while values as low as 0.005 and 0.001 are sometimes used for structure learning.

The conditional independences and dependences of a domain are connected through a set of
general rules, introduced in Pearl (1988) and shown boxed in Eq. (5). These can be seen as con-
straints in a meta-space representing all possible independences in the domain. More specifically,
let us imagine a meta-space of binary variables, each corresponding to the truth value of the in-
dependence of a triplet (X,Y | Z) (e.g., true for independence and false for dependence). Each
point in this space corresponds to a conditional independence assignment to all possible triplets in
the domain. In this conceptual space not all points are tenable; in particular the set of rules of Eq. (5)
constrain the truth values of independences corresponding to triplets. For domains for which there
exists a faithful Bayesian network a more relaxed set of properties hold, shown boxed in Eq. (6)
where α,β,γ and δ correspond to single variables. In both sets of axioms, the property of Intersec-
tion holds if the probability distribution of the domain is positive, meaning that every assignment
to all variables in the domain has a non-zero probability. Eq. (6) were first introduced by Dawid
(1979) in a slightly different form and independently re-discovered by Pearl and Paz (1985).

Note that the axioms of Eq. (5) are necessarily incomplete; Studený (1991) showed that there is
no finite axiomatization of the conditional independence relation in general. The implication of this
is that there may be some inconsistencies involving some set of independences and dependences
that no method can detect and resolve.

In the next section we describe the argumentation framework, which allows one to make ben-
eficial use of these constraints. This is followed by its application to our problem of answering
independence queries from knowledge bases that contain sets of potentially inconsistent indepen-
dence propositions.

3. The Argumentation Framework

There exist two major approaches for reasoning with information contained in inconsistent knowl-
edge bases such as those containing independence statements that were described in the previous

305

BROMBERG AND MARGARITIS

section. These two distinct approaches correspond to two different attitudes: One is to resolve the
inconsistencies by removing a subset of propositions such that the resulting KB becomes consistent;
this is called belief revision in the literature (Gärdenfors, 1992; Gärdenfors and Rott, 1995; Shapiro,
1998; Martins, 1992). A potential shortcoming (Shapiro, 1998) of belief revision stems from the fact
that it removes propositions, which discards potentially valuable information. In addition, an erro-
neous modification of the KB (such as the removal of a proposition) may have unintended negative
consequences if later more propositions are inserted in the KB. A second approach to inconsistent
KBs is to allow inconsistencies but to use rules that may be possibly contained in it to deduce which
truth value of a proposition query is “preferred” in some way. One instance of this approach is
argumentation (Dung, 1995; Loui, 1987; Prakken, 1997; Prakken and Vreeswijk, 2002), which is
a sound approach that allows inconsistencies but uses a proof procedure that is able to deduce (if
possible) that one of the truth values of certain propositions is preferred over its negation. Argu-
mentation is a reasoning model that belongs to the broader class of defeasible logics (Pollock, 1992;
Prakken, 1997). Our approach uses the argumentation framework of Amgoud and Cayrol (2002)
that considers preferences over arguments, extending Dung’s more fundamental framework (Dung,
1995). Preference relations give an extra level of specificity for comparing arguments, allowing a
more refined form of selection between conflicting propositions. Preference-based argumentation
is presented in more detail in Section 3.2.

We proceed now to describe the argumentation framework.

Definition 1. An argumentation framework is a pair 〈A ,R 〉, where A is a set of arguments and R is
a binary relation representing a defeasibility relationship between arguments, that is, R ⊆ A×A .
(a,b) ∈ R or equivalently “a R b” reads that argument a defeats argument b. We also say that a
and b are in conflict.

An example of the defeat relation R is logical defeat, which occurs when an argument contra-
dicts another logically.

The elements of the argumentation framework are not propositions but arguments. Given a po-
tentially inconsistent knowledge base K = 〈Σ,Ψ〉 with a set of propositions Σ and a set of inference
rules Ψ, arguments are defined formally as follows.

Definition 2. An argument over knowledge base 〈Σ,Ψ〉 is a pair (H,h) where H ⊆ Σ such that:

• H is consistent,

• H `Ψ h,

• H is minimal (with respect to set inclusion).

H is called the support and h the conclusion or head of the argument.

In the above definition `Ψ stands for classical logical inference over the set of inference rules Ψ.
Intuitively an argument (H,h) can be thought as an “if-then” rule, that is, “if H then h.” In incon-
sistent knowledge bases two arguments may contradict or defeat each other. The defeat relation is
defined through the rebut and undercut relations, defined as follows.

Definition 3. Let (H1,h1), (H2,h2) be two arguments.

• (H1,h1) rebuts (H2,h2) iff h1 ≡ ¬h2.

306

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Algorithm 1 Recursive computation of acceptable arguments: AccR = F (A ,R ,S)

1: S′←− S∪{a ∈ A | a is defended by S}
2: if S = S′ then
3: return S′

4: else
5: return F (A ,R ,S′)

• (H1,h1) undercuts (H2,h2) iff ∃h ∈ H2 such that h≡ ¬h1.

If (H1,h1) rebuts or undercuts (H2,h2) we say that (H1,h1) defeats (H2,h2).

(The symbol “≡” stands for logical equivalence.) In other words, (H1,h1) R (H2,h2) if and
only if (H1,h1) rebuts or undercuts (H2,h2).

The objective of argumentation is to decide on the acceptability of a given argument. There are
three possibilities: an argument can be accepted, rejected, or neither. This partitions the space of
arguments A in three classes:

• The class AccR of acceptable arguments. Intuitively, these are the “good” arguments. In the
case of an inconsistent knowledge base, these will be inferred from the knowledge base.

• The class RejR of rejected arguments. These are the arguments defeated by acceptable ar-
guments. When applied to an inconsistent knowledge base, these will not be inferred from
it.

• The class AbR of arguments in abeyance. These arguments are neither accepted nor rejected.

The semantics of acceptability proposed by Dung (1995) dictates that an argument should be
accepted if it is not defeated, or if it is defended by acceptable arguments, that is, each of its defeaters
is itself defeated by an acceptable argument. This is formalized in the following definitions.

Definition 4. Let 〈A ,R 〉 be an argumentation framework, and S ⊆ A . An argument a is defended
by S if and only if ∀b, if (b R a) then ∃c ∈ S such that (c R b).

Dung characterizes the set of acceptable arguments by a monotonic function F , that is, F (S)⊆
F (S∪ T) for some S and T . Given a set of arguments S ⊆ A as input, F returns the set of all
arguments defended by S:

Definition 5. Let S⊆ A . Then F (S) = {a ∈ A | a is defended by S}.

Slightly overloading our notation, we define F (∅) to contain the set of arguments that are not
defeated by any argument in the framework.

Definition 6. F (∅) = {a ∈ A | a is not defeated by any argument in A}.

Dung proved that the set of acceptable arguments is the least fix-point of F , that is, the smallest
set S such that F (S) = S.

Theorem 7 (Dung 1995). Let 〈A ,R 〉 be an argumentation framework. The set of acceptable argu-
ments AccR is the least fix-point of the function F .

307

BROMBERG AND MARGARITIS

Dung also showed that if the argumentation framework 〈A ,R 〉 is finitary, that is, for each ar-
gument A there are finitely many arguments that defeat A, the least fix-point of function F can be
obtained by iterative application of F to the empty set. We can understand this intuitively: From our
semantics of acceptability it follows that all arguments in F (∅) are accepted. Also, every argument
in F (F (∅)) must be acceptable as well since each of its arguments is defended by acceptable argu-
ments. This reasoning can be applied recursively until a fix-point is reached. This happens when the
arguments in S cannot be used to defend any other argument not in S, that is, no additional argument
is accepted. This suggests a simple algorithm for computing the set of acceptable arguments. Algo-
rithm 1 shows a recursive procedure for this, based on the above definition. The algorithm takes as
input an argumentation framework 〈A ,R 〉 and the set S of arguments found acceptable so far, that
is, S = ∅ initially.

Let us illustrate these ideas with an example.

Example 2. Let 〈A ,R 〉 be an argumentation framework defined by A = {a,b,c} and R = {(a,b),
(b,c)}. The only argument that is not defeated is a, and therefore F (∅) = {a}. Argument b is
defeated by the acceptable argument a, so b cannot be defended and is therefore rejected, that is,
b ∈ RejR . Argument c, though defeated by b, is defended by (acceptable argument) a which defeats
b, so c is acceptable. The set of acceptable arguments is therefore AccR = {a,c} and the set of
rejected arguments is RejR = {b}.

The bottom-up approach of Algorithm 1 has the disadvantage that it requires the computation
of all acceptable arguments to answer the acceptability status of a single one. In practice, and in
particular in the application of argumentation to independence tests, the entire set of acceptable
arguments is rarely needed. An alternative is to take a top-down approach (Amgoud and Cayrol,
2002; Dung, 1995; Toni and Kakas, 1995; Kakas and Toni, 1999) that evaluate the acceptability of
some input argument by evaluating (recursively) the acceptability of its attackers. Below we present
an alternative algorithm, called the top-down algorithm, for deciding the acceptability of an input
argument. This algorithm is a version of the dialog tree algorithm of Amgoud and Cayrol (2002),
where details unnecessary for the current exposition are not shown. This algorithm is provably
equivalent to Algorithm 1 (whenever it is given the same input it is guaranteed to produce the
same output), but it is considerably more efficient (as shown later in Section 5.2). We sketch the
algorithm here and show a concrete version using the preference-based argumentation framework
in Section 3.2.

Given an input argument a, the top-down algorithm employs a goal-driven approach for an-
swering whether a is accepted or not. Its operation is guided by the same acceptability semantics as
those used for Algorithm 1. Let us denote the predicates A(a) ≡ (a ∈ AccR), R(a) ≡ (a ∈ RejR),
and Ab(a)≡ (a ∈ AbR). Then, the acceptability semantics are as follows.

Algorithm 2 Top-down computation of acceptable arguments: top-down(A ,R ,a)

1: defeaters← set of arguments in A that defeat a according to R .
2: for d ∈ defeaters do
3: if top-down(A ,R ,d) = accepted then
4: return rejected
5: return accepted

308

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

(Acceptance) A node is accepted iff it has no defeaters or all its defeaters are rejected:

A(a) ⇐⇒ ∀b ∈ defeaters(a),R(b).

(Rejection) A node is rejected iff at least one of its defeaters is accepted:

R(a) ⇐⇒ ∃b ∈ defeaters(a),A(b). (7)

(Abeyance) A node is in abeyance iff its not accepted nor rejected:

Ab(a) ⇐⇒ ¬A(a)∧¬R(a).

The logic of these equations can be easily implemented with a recursive algorithm, shown in Algo-
rithm 2. The algorithm, given some input argument a, loops over all defeaters of a and responds
rejected if any of its defeaters is accepted (line 4). If execution reaches the end of the loop at line
5 then that means that none of its defeaters was accepted, and thus the algorithm accepts the input
argument a. We can represent the execution of the top-down algorithm graphically by a tree that
contains a at the root node, and all the defeaters of a node as its children. A leaf is reached when a
node has no defeaters. In that case the loop contains no iterations and line 5 is reached trivially.

Unfortunately, the top-down algorithm, as shown in Algorithm 2, will fail to terminate when a
node is in abeyance. This is clear from the following lemma (proved formally in Appendix A but
reproduced here to aid our intuition).

Lemma 8. For every argument a,

Ab(a) =⇒ ∃b ∈ attackers(a),Ab(b).

(An attacker is a type of defeater; it is explained in detail in the next section. For the follow-
ing discussion the reader can substitute “attacker” with “defeater” in the lemma above.) From this
lemma we can see that, if an argument is in abeyance, its set of defeaters must contain an argument
in abeyance and thus the recursive call of the top-down algorithm will never terminate, as there will
always be another defeater in abeyance during each call. While there are ways to overcome this
difficulty in the general case, we can prove that using the preference-based argumentation frame-
work (presented later in the paper) and for the particular preference relation introduced for deciding
on independence tests (c.f. Section 3.3), no argument can be in abeyance and thus the top-down
algorithm always terminates. A formal proof of this is presented later in Section 5.

We conclude the section by proving that the top-down algorithm is equivalent to the bottom-up
algorithm of Algorithm 1 that is, given the same input as Algorithm 1 it is guaranteed to produce
the same output. The proof assumes no argument is in abeyance. This assumption is satisfied for
argumentation in independence knowledge bases (c.f. Theorem 20, Section 5).

Theorem 9. Let a be an argument in the argumentation framework 〈A ,R 〉, and let F be the set of
acceptable arguments output by Algorithm 1. Assuming a is not in abeyance,

top-down(A ,R ,a) = accepted ⇐⇒ a ∈ F (8)

top-down(A ,R ,a) = rejected ⇐⇒ a /∈ F . (9)

309

BROMBERG AND MARGARITIS

Proof According to Theorem 7, the fix point of function F returned by Algorithm 1 contains
the set of arguments considered acceptable by the acceptability semantics of Dung. As the top-
down algorithm is a straightforward implementation of Dung’s acceptability semantics expressed
by Eq. (7), the double implication of Eq. (8) must follow. To prove Eq. (9) we can prove the
equivalent expression with both sides negated, that is,

top-down(A ,R ,a) 6= rejected ⇐⇒ a ∈ F .

Since a is not in abeyance, if the top-down algorithm does not return rejected it must return
accepted. The double implication is thus equivalent to Eq. (8), which was proved true.

3.1 Argumentation in Independence Knowledge Bases

We can now apply the argumentation framework to our problem of answering queries from knowl-
edge bases that contain a number of potentially inconsistent independences and dependencies and a
set of rules that express relations among them.

Definition 10. An independence knowledge base (IKB) is a knowledge base 〈Σ,Ψ〉 such that its set
of propositions Σ contains independence propositions of the form (X⊥⊥Y | Z) or (X 6⊥⊥Y | Z) for
X, Y and Z disjoint subsets of V, and its set of inference rules Ψ is either the general set of axioms
shown in Eq. (5) or the specific set of axioms shown in Eq. (6).

For IKBs, the set of arguments A is obtained in two steps. First, for each proposition σ ∈
Σ (independence or dependence) we add to A the argument ({σ},σ). This is a valid argument
according to Definition 2 since its support {σ} is (trivially) consistent, it (trivially) implies the head
σ, and it is minimal (the pair (∅,σ) is not a valid argument since ∅ is equivalent to the proposition
true which does not entail σ in general). We call arguments of the form ({σ},σ) propositional
arguments since they correspond to single propositions. The second step in the construction of
the set of arguments A concerns rules. Based on the chosen set of axioms (general or directed)
we construct an alternative, logically equivalent set of rules Ψ′, each member of which is single-
headed, that is, contains a single proposition as the consequent, and decomposed, that is, each of its
propositions is an independence statement over single variables (the last step is justified by the fact
that typical algorithms for causal learning never produce nor require the evaluation of independence
between sets).

To construct the set of single-headed rules we consider, for each axiom, all possible contraposi-
tive versions of it that have a single head. To illustrate, consider the Weak Transitivity axiom

(X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ γ) =⇒ (X⊥⊥γ | Z) ∨ (γ⊥⊥Y | Z)

from which we obtain the following set of single-headed rules:

(X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ γ)∧ (X 6⊥⊥γ | Z) =⇒ (γ⊥⊥Y | Z)

(X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ γ)∧ (γ 6⊥⊥Y | Z) =⇒ (X⊥⊥γ | Z)

(X⊥⊥Y | Z∪ γ)∧ (γ 6⊥⊥Y | Z)∧ (X 6⊥⊥γ | Z) =⇒ (X 6⊥⊥Y | Z)

(X⊥⊥Y | Z)∧ (γ 6⊥⊥Y | Z)∧ (X 6⊥⊥γ | Z) =⇒ (X 6⊥⊥Y | Z∪ γ).

310

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

To obtain decomposed rules we apply the Decomposition axiom to every single-headed rule to
produce only propositions over singletons. To illustrate, consider the Intersection axiom:

(X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z).

In the above the consequent coincides with the antecedent of the Decomposition axiom, and we thus
replace the Intersection axiom with a decomposed version:

(X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y | Z)∧ (X⊥⊥W | Z).

Finally, note that it is easy to show that this rule is equivalent to two single-headed rules, one
implying (X⊥⊥Y | Z) and the other implying (X⊥⊥W | Z).

The result of the application of the above procedures is a set of single-headed, decomposed
rules Ψ′. We construct, for each such rule (Φ1 ∧Φ2 . . .∧Φn =⇒ ϕ) ∈ Ψ′ and for each subset of
Σ that matches exactly the set of antecedents, that is, each subset {ϕ1,ϕ2 . . . ,ϕn} of Σ such that
Φ1 ≡ ϕ1,Φ2 ≡ ϕ2 . . . Φn ≡ ϕn, the argument ({ϕ1∧ϕ2∧ . . .∧ϕn},ϕ), and add it to A .1

IKBs can be augmented with a set of preferences that allow one to take into account the relia-
bility of each test when deciding on the truth value of independence queries. This is described in
the next section.

3.2 Preference-based Argumentation Framework

Following Amgoud and Cayrol (2002), we now refine the argumentation framework of Dung (1995)
for cases where it is possible to define a preference order Π over arguments.

Definition 11. A preference-based argumentation framework (PAF) is a triplet 〈A ,R ,Π〉 where A
is a set of arguments, R ⊆ A ×A is a binary relation representing a defeat relationship between
pairs of arguments, and Π is a (partial or total) order over A .

For the case of inconsistent knowledge bases, preference Π over arguments follows the prefer-
ence π over their support, that is, stronger support implies a stronger argument, which is given as a
partial or total order over sets of propositions. Formally:

Definition 12. Let K = 〈Σ,Ψ〉 be a knowledge base, π be a (partial or total) order on subsets of
Σ and (H,h), (H ′,h′) two arguments over K . Argument (H,h) is π-preferred to (H ′,h′) (denoted
(H,h)�π (H ′,h′)) if and only if H is preferred to H ′ with respect to π.

In what follows we overload our notation by using π to denote either the ordering over arguments
or over their supports.

An important sub-class of preference relations is the strict and transitive preference relation,
defined as follows.

Definition 13. We say that preference relation π over arguments is strict if the order of arguments
induced by it is strict and total, that is, for every pair of arguments a and b,

(
a�π b

)
⇐⇒ ¬

(
b�π a

)
.

1. This is equivalent to propositionalizing the set of rules, which are first-order (the rules of Eqs. (5) and (6) are univer-
sally quantified over all sets of variables, and thus are the rules in Ψ′). As this may be expensive (exponential in the
number of propositions), in practice it is not implemented in this way; instead, appropriate rules are matched on the
fly during the argumentation inference process.

311

BROMBERG AND MARGARITIS

Definition 14. We say that preference relation π over arguments is transitive if, for every three
arguments a, b and c, (

a�π b
)
∧

(
b�π c

)
=⇒

(
a�π c

)
.

The importance of the properties of strictness and transitivity will become clear later when we
talk about the correctness of the argumentative independence test (defined later in Section 4).

We now introduce the concept of attack relation, a combination of the concepts of defeat and
preference relation.

Definition 15. Let 〈A ,R ,π〉 be a PAF, and a, b ∈ A be two arguments. We say b attacks a if and
only if b R a and ¬(a�π b).

We can see that the attack relation is a special case of the defeat relation and therefore the
same conclusions apply; in particular Theorem 7, which allows us to compute the set of acceptable
arguments of a PAF using Algorithm 1 or Algorithm 2.

In Sections 3.3 and 4 below, we apply these ideas to construct an approximation to the independence-
query oracle that is more reliable than a statistical independence test.

3.3 Preference-based Argumentation in Independence Knowledge Bases

We now describe how to apply the preference-based argumentation framework of Section 3.2 to
improve the reliability of conditional independence tests conducted on a (possibly small) data set.
A preference-based argumentation framework has three components. The first two, namely A and
R , are identical to the general argumentation framework. We now describe how to construct the
third component, namely the preference order π over subsets H of Σ, in IKBs. We define it using a
belief estimate ν(H) that all propositions in H are correct,

H�π H ′⇐⇒ ν(H) > ν(H ′)∨
[
ν(H) = ν(H ′)∧ f (H,H ′)

]
. (10)

That is, H is preferred over H ′ if and only if its belief of correctness is higher than that of H ′ or,
in the case that these beliefs are equal, we break the tie using predicate f . For that we require that

∀H,H ′ ⊆ A , such that H 6= H ′, f (H,H ′) = ¬ f (H ′,H). (11)

In addition, we require that f be transitive, that is, f (H,H ′)∧ f (H ′,H ′′) =⇒ f (H,H ′′). This implies
that the preference relation π is transitive, which is a necessary condition for proving a number of
important theorems in Appendix A. In our implementation we resolved ties by assuming an arbitrary
order of the variables in the domain, determined at the beginning of the algorithm and maintained
fixed during its entire execution. Based on this ordering, f (H,H ′) resolved ties by the lexicographic
order of the variables in H and H ′. By this definition, our f is both non-commutative and transitive.

Before we define ν(H) we first show that π, as defined by Eqs. (10) and (11) and for any defi-
nition of ν(H), satisfies two important properties, namely strictness (Definition 13) and transitivity
(Definition 14). We do this in the following two lemmas.

Lemma 16. The preference relation for independence knowledge bases defined by Equations (10)
and (11) is strict.

312

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Proof

H�π H ′

⇐⇒ ν(H) > ν(H ′)∨
[
ν(H) = ν(H ′)∧ f (H,H ′)

]
[By Eq. (10)]

⇐⇒ ν(H)≥ ν(H ′)∧
[
ν(H) > ν(H ′)∨ f (H,H ′)

]
[Distributivity of ∨ over ∧]

⇐⇒ ¬
{

ν(H ′) > ν(H)∨
[
ν(H ′)≥ ν(H)∧ f (H ′,H)

]}
[Double negation and Eq. (11)]

⇐⇒ ¬
{[

ν(H ′) > ν(H)∨ν(H ′)≥ ν(H)
]
∧

[
ν(H ′) > ν(H)∨ f (H ′,H)

]}

⇐⇒ ¬
{

ν(H ′)≥ ν(H)∧
[
ν(H ′) > ν(H)∨ f (H ′,H)

]}

⇐⇒ ¬
{[

ν(H ′) > ν(H)∨ν(H ′) = ν(H)
]
∧

[
ν(H ′) > ν(H)∨ f (H ′,H)

]}

⇐⇒ ¬
{

ν(H ′) > ν(H)∨
[
ν(H ′) = ν(H)∧ f (H ′,H)

]}
[Common factor ν(H ′) > ν(H)]

⇐⇒ ¬(H ′�π H) [Again by Eq. (10)]

Lemma 17. The preference relation defined by Equations (10) and (11) is transitive.

Proof

H�π J ∧ J�π K

⇐⇒
{

ν(H) > ν(J) ∨
[
ν(H) = ν(J) ∧ f (H,J)

]}

∧
{

ν(J) > ν(K) ∨
[
ν(J) = ν(K) ∧ f (J,K)

]}
[By Eq. (10)]

⇐⇒
[
ν(H) > ν(J) ∧ ν(J) > ν(K)

]
[Case A]

∨
[
ν(H) > ν(J) ∧ ν(J) = ν(K) ∧ f (J,K)

]
[Case B]

∨
[
ν(H) = ν(J) ∧ f (H,J) ∧ ν(J) > ν(K)

]
[Case C]

∨
[
ν(H) = ν(J) ∧ f (H,J) ∧ ν(J) = ν(K) ∧ f (J,K)

]
[Case D]

To complete the proof we show that each of the cases A, B, C and D implies H�π K.

(Case A) ν(H) > ν(J) ∧ ν(J) > ν(K) =⇒ ν(H) > ν(K) =⇒ H�π K.

(Case B) ν(H) > ν(J) ∧ ν(J) = ν(K) ∧ f (J,K) =⇒ ν(H) > ν(K) =⇒ H�π K.

(Case C) ν(H) = ν(J) ∧ f (H,J) ∧ ν(J) > ν(K) =⇒ ν(H) > ν(K) =⇒ H�π K.

(Case D)

ν(H) = ν(J) ∧ f (H,J) ∧ ν(J) = ν(K) ∧ f (J,K) =⇒ ν(H) = ν(K) ∧ f (H,K)

=⇒ H�π K,

due to the transitivity of predicate f .

313

BROMBERG AND MARGARITIS

We now return to the computation of ν(H). We estimate the belief ν(H) that a set of proposi-
tions H is correct by assuming independence among these propositions.2 Overloading notation and
denoting by ν(h) the probability of an individual proposition h being correct, the probability of all
elements in H being correct under this assumption of independence is

ν(H) = ∏
h∈H

ν(h). (12)

The belief that a proposition stating independence is correct can be computed in different ways,
depending on the particular choice of independence oracle chosen. In this paper we use Wilk’s G2

test, but the resulting belief can be easily adapted to any other independence oracle that produces
p-values. We hope that the following discussion serves as a starting point for others to adapt it to
other types of independence oracles.

As discussed in Section 2, the p-value p(X ,Y | Z) computed by this test is the probability of
error in rejecting the null hypothesis (conditional independence in our case) and assuming that X
and Y are dependent. Therefore, the probability of a test returning dependence of being correct is

νD(X 6⊥⊥Y | Z) = 1− p(X ,Y | Z)

where the subscript D indicates that this expression is valid only for dependencies. Formally, the
error of falsely rejecting the null hypothesis is called a type I error. To determine the preference
of a test returning independence we can, in principle, use this procedure symmetrically: use the
probability of error in falsely accepting the null hypothesis (again, this is conditional independence),
called a type II error, which we denote by β(X ,Y | Z). In this case we can define the preference of
independence (X⊥⊥Y | Z) as the probability of correctly assuming independence by

νI(X⊥⊥Y | Z) = 1−β(X ,Y | Z)

where again the subscript I indicates that it is valid only for independences. Unfortunately value of
β cannot be obtained without assumptions, because it requires the computation of the probability of
the test statistic under the hypothesis of dependence, and there are typically an infinite number of
dependent models. In statistical applications, the β value is commonly approximated by assuming
one particular dependence model if prior knowledge about that is available. In the absence of such
information however in this paper we estimate it using a heuristic function of the p-value, assuming
the following heuristic constraints on β:

β(X ,Y | Z) =

1 if p(X ,Y | Z) = 0
α− α

2+|Z| if p(X ,Y | Z) = 1

α if p(X ,Y | Z) = α.

The first constraint (for p(X ,Y | Z) = 0) corresponds to the intuition that when the p-value of
the test is close to 0, the test statistic is very far from its value under the model that assumes inde-
pendence, and thus we would give more preference to the “dependence” decision. The intuition for

2. The assumption of independence is a heuristic, and is made mainly due to the difficulty of determining the dependence
between two or more statistical tests evaluated on the same data set. Other possible ways of defining the preference
of a set of propositions are possible. The problem of dealing with multiple tests is an open problem and an area of
active research in statistics; see Section 1 for a discussion.

314

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Figure 1: Preference functions νI(h) and νD(h) for statements of independence and dependence
respectively, as functions of the p-value of test h.

the second case (p(X ,Y | Z) = 1) is reversed—when the value of the statistic is very close to the
expected one under independence then independence is preferred. The value of the second case is
tempered by the number of variables in the conditioning set. This reflects the practical consideration
that, as the number 2+ |Z| of variables involved in the test increases, given a fixed data set, the dis-
criminatory power of the test diminishes as |Z| →∞. The third case causes the two functions νI and
νD to intersect at p-value α. This is due to fairness: in the absence of non-propositional arguments
(i.e., in the absence of inference rules in our knowledge base), the independence decisions of the
argumentation framework should match those of the purely statistical tests, that is, “dependence”
if and only if (p-value ≤ α). If instead we chose a different intersection point, then the resulting
change in the outcome of tests may have been simply due to bias in the independence decision that
favors dependence or independence, that is, equivalent to an arbitrary change of the threshold of the
statistical test, and the comparison of the statistical and the new test based on argumentation would
not be a fair one. The remaining values of β are approximated by linear interpolation among the
above points. The result is summarized in Fig. 1, which depicts preference functions νD and νI with
respect to the p-value of the corresponding statistical test.

Let us illustrate how the preference-based argumentation can be used to resolve the inconsisten-
cies of Example 1.

Example 3. In example 1 we considered an IKB with the following propositions

(0⊥⊥1 | 2) (13)

(0 6⊥⊥3 | 2) (14)

(0⊥⊥3 | {1,2}) (15)

(0⊥⊥1 | 2)∧ (0 6⊥⊥3 | 2) =⇒ (0 6⊥⊥3 | {1,2}). (16)

315

BROMBERG AND MARGARITIS

Following the IKB construction procedure described in the previous section, propositions (13),
(14) and (15) correspond to the following arguments, respectively:

({
(0⊥⊥1 | 2)

}
,(0⊥⊥1 | 2)

)

({
(0 6⊥⊥3 | 2)

}
,(0 6⊥⊥3 | 2)

)

({
(0⊥⊥3 | {1,2})

}
,(0⊥⊥3 | {1,2})

)
(17)

while rule (16) corresponds to the argument
({

(0⊥⊥1 | 2),(0 6⊥⊥3 | 2)
}

,(0 6⊥⊥3 | {1,2})
)

. (18)

Let us extend this IKB with the following preference values for its propositions and rule.

Pref [(0⊥⊥1 | 2)] = 0.8

Pref [(0 6⊥⊥3 | 2)] = 0.7

Pref [(0⊥⊥3 | {1,2})] = 0.5.

According to Definition (12), the preference of each argument ({σ},σ) is equal to the preference
value of {σ} which is equal to the preference of σ, as it contains only a single proposition. Thus,

Pref
[({

(0⊥⊥1 | 2)
}

,(0⊥⊥1 | 2)
)]

= 0.8

Pref
[({

(0 6⊥⊥3 | 2)
}

,(0 6⊥⊥3 | 2)
)]

= 0.7

Pref
[({

(0⊥⊥3 | {1,2})
}

,(0⊥⊥3 | {1,2})
)]

= 0.5.

The preference of argument (18) equals the preference of the set of its antecedents, which, according
to Eq. (12), is equal to the product of their individual preferences, that is,

Pref
[({

(0⊥⊥1 | 2),(0 6⊥⊥3 | 2)
}

,(0 6⊥⊥3 | {1,2})
)]

= 0.8×0.7 = 0.56.

Proposition (15) and rule (16) contradict each other logically, that is, their corresponding ar-
guments (17) and (18) defeat each other. However, argument (18) is not attacked as its preference is
0.56 which is larger than 0.5, the preference of its defeater argument (17). Since no other argument
defeats (18), it is acceptable, and (17), being attacked by an acceptable argument, must be rejected.
We therefore see that using preferences the inconsistency of Example 1 has been resolved in favor
of rule (16).

Let us now illustrate the defend relation, that is, how an argument can be defended by some other
argument. The example also illustrates an alternative resolution for the inconsistency of Example 1,
this time in favor of the independence proposition (15).

Example 4. Let us extend the IKB of Example 3 with two additional independence propositions and
an additional rule. The new propositions and their preference are:

Pref [(0⊥⊥4 | {2,3})] = 0.9

Pref [(0⊥⊥3 | {2,4})] = 0.8

316

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

and the new rule is:

(0⊥⊥4 | {2,3})∧ (0⊥⊥3 | {2,4}) =⇒ (0⊥⊥3 | 2).

This rule is an instance of the Intersection axiom followed by Decomposition.
The corresponding arguments and preferences are:

Pref
[({

(0⊥⊥4 | {2,3})
}

,(0⊥⊥4 | {2,3})
)]

= 0.9

Pref
[({

(0⊥⊥3 | {2,4})
}

,(0⊥⊥3 | {2,4})
)]

= 0.8

corresponding to the two propositions, and

Pref
[({

(0⊥⊥4 | {2,3}),(0⊥⊥3 | {2,4})
}

,(0⊥⊥3 | 2)
)]

= 0.9×0.8 = 0.72 (19)

corresponding to the rule.
As in Example 3, argument (17) is attacked by argument (18). Let us represent this graphically

using an arrow from argument a to argument b to denote that a attacks b, that is,

Argument (18)−→ Argument (17).

If the IKB was as in Example 3, (18) would had been accepted and (17) would have been
rejected. However, the additional argument (19) now defeats (undercuts) (18) by logically contra-
dicting its antecedent (0 6⊥⊥3 | 2). Since the preference of (19), namely 0.72, is larger than that of
(18), namely 0.56, (19) attacks (18). Therefore, (19) defends all arguments that are attacked by
argument (18), and in particular (17). Graphically,

Argument (19)−→ Argument (18)−→ Argument (17).

Note this is not sufficient for accepting (17) as it has not been proved that its defender (19) is
itself acceptable. We leave the proof of this as an exercise for the reader.

4. The Argumentative Independence Test (AIT)

The independence-based preference argumentation framework described in the previous section
provides a semantics for the acceptance of arguments consisting of independence propositions.
However, what we need is a procedure for a test of independence that, given as input a triplet
σ = (X ,Y | Z) responds whether X is independent or dependent of Y given Z. In other words,
we need a semantics for the acceptance of propositions, not arguments. Let us consider the two
propositions related to the input triplet σ = (X ,Y | Z), proposition (σ = true), abbreviated σt,
and proposition (σ = false), abbreviated σf, that correspond to independence (X⊥⊥Y | Z) and
dependence (X 6⊥⊥Y | Z) of σ, respectively. The basic idea for deciding on the independence or de-
pendence of input triplet σ is to define a semantics for the acceptance or rejection of propositions σt

and σf based on the acceptance or rejection of their respective propositional arguments ({σt},σt)
and ({σf},σf). Formally,

(X 6⊥⊥Y | Z) is accepted iff ({(X 6⊥⊥Y | Z)},(X 6⊥⊥Y | Z)) is accepted, and

(X⊥⊥Y | Z) is accepted iff ({(X⊥⊥Y | Z)},(X⊥⊥Y | Z)) is accepted. (20)

317

BROMBERG AND MARGARITIS

Based on this semantics over propositions, we decide on the dependence or independence of
triplet σ as follows:

σt = (X⊥⊥Y | Z) is accepted =⇒ (X⊥⊥Y | Z)

σf = (X 6⊥⊥Y | Z) is accepted =⇒ (X 6⊥⊥Y | Z). (21)

We call the test that determines independence in this manner the Argumentative Independence
Test or AIT. For the above semantics to be well-defined, a triplet σ must be either independent
or dependent, that is, not both or neither. For that, exactly one of the antecedents of the above
implications of Eq. (21) must be true. Formally,

Theorem 18. For any input triplet σ = (X ,Y | Z), the argumentative independence test (AIT) de-
fined by Eqs. (20) and (21) produces a non-ambiguous decision, that is, it decides σ evaluates to
either independence or dependence, but nor both or neither.

For that to happen, one and only one of its corresponding propositions σt or σf must be ac-
cepted. A necessary condition for this is given by the following theorem.

Theorem 19. Given a PAF 〈A ,R ,π〉 with a strict and transitive preference relation π, every propo-
sitional argument ({σt},σt) ∈ A and its negation ({σf},σf) satisfy

({σt},σt) is accepted iff ({σf},σf) is rejected.

The above theorem is not sufficient because the propositions may still be in abeyance, but this
possibility is ruled out for strict preference relations by Theorem 20, presented in the next section.

The formal proofs of Theorems 18, 19 and 20 are presented in Appendix B. We now illustrate
the use of AIT with an example.

Example 5. We consider an extension of Example 3 to illustrate the use of the AIT to decide on
the independence or dependence of input triplet (0,3 | {1,2}). According to Eq. (20) the decision
depends on the status of the two propositional arguments:

({(0 6⊥⊥3 | {1,2})},(0 6⊥⊥3 | {1,2})), and (22)

({(0⊥⊥3 | {1,2})},(0⊥⊥3 | {1,2})). (23)

Argument (23) is equal to argument (17) of Example 3 that was proved to be rejected in that
example. Therefore, according to Theorem 19, its negated propositional argument Eq. (22) must be
accepted, and we can conclude that triplet (0,3 | {1,2}) corresponds to a dependence, that is, we
conclude that (0 6⊥⊥3 | {1,2}).

5. The Top-down AIT Algorithm

We now discuss in more detail the top-down algorithm which is used to implement the argumen-
tative independence test, introduced in Section 3. We start by simplifying the recursion of Eq. (7)
that determines the state (accepted, rejected, or in abeyance) of an argument a. We then explain the
algorithm and analyze its computability (i.e., prove that its recursive execution is always finite) and
its time complexity.

To simplify the recursion Eq. (7) we use the following theorem (proved in Appendix B).

318

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Theorem 20. Let 〈A ,R ,π〉 be a PAF with a strict preference relation π. Then no argument a ∈ A
is in abeyance.

This theorem reduces the number of states of each argument to two, that is, an argument can
be either accepted or not accepted (rejected). We will use the name of the argument a to denote
the predicate “a is accepted” and its negation ¬a to denote the predicate “a is rejected.” With this
notation, the above theorem, and the fact that we have extended the semantics of acceptability from
the defeat to the attack relation (using preferences), the recursion of Eq. (7) can be expressed as
follows

a ⇐⇒ ∀b ∈ attackers(a), ¬b

¬a ⇐⇒ ∃b ∈ attackers(a), b

or, equivalently,

a ⇐⇒
^

b∈attackers(a)

¬b

¬a ⇐⇒
_

b∈attackers(a)

b.

Finally, we notice that the second formula is logically equivalent to the first (simply negating
both sides of the double implication recovers the first). Therefore, the Boolean value of the dialog
tree for a can be computed by the simple expression

a ⇐⇒
^

b∈attackers(a)

¬b. (24)

To illustrate, consider an attacker b of a. If b is rejected, that is, ¬b, the conjunction on the right
cannot be determined without examining the other attackers of a. Only when all attackers of a are
known to be rejected can the value of a be determined, that is, accepted. Instead, if b is accepted,
that is, b, the state of ¬b is false and the conjunction can be immediately evaluated to false, that
is, a is rejected regardless of the acceptability of any other attackers.

An iterative version of the top-down algorithm is shown in Algorithm 3. We assume that the
algorithm can access a global PAF 〈A ,R ,π〉, with arguments in A defined over a knowledge base
K = 〈Σ,Ψ〉. Given as input a triplet t = (X ,Y | Z), if the algorithm returns true (false) then we
conclude that t is independent (dependent). It starts by creating a root node u for the propositional
argument U of proposition t = true (lines 1–6). According to Eqs. (20) and (21), the algorithm
then decides true if U is accepted (line 22). Otherwise, the algorithm returns false (line 23). This
is because in this case, according to Theorem 19, the negation of propositional argument U must be
accepted.

Algorithm 3 is an iterative version of a tree traversal algorithm. It maintains a queue of the
nodes that have not been expanded yet. A node is expanded when its children are added to the tree.
In the algorithm, this is done in the loop of lines 17 to 21, which uses subroutine getAttackers of
Algorithm 5 to obtain all attackers of an argument. This subroutine finds all attackers of the input
argument a in a backward-chaining fashion, that is, given an argument a = (H,h), it searches for all
rules in the knowledge base K whose consequent matches the negation of some proposition in the

319

BROMBERG AND MARGARITIS

Algorithm 3 independent(triplet t).

1: ftrue← proposition (t = true) /* Creates independence proposition (t = true). */
2: Utrue← ({ ftrue}, ftrue)
3: utrue← node for argument Utrue

4: utrue.parent← nil
5: u.STATE← nil
6: f ringe← [u] /* Initialize with u (root). */
7: /* Create global rejected node, denoted by ρ. */
8: ρ← node with no argument and state rejected
9: while f ringe 6= ∅ do

10: u← dequeue(f ringe)
11: attackers← getAttackers(u.argument)
12: if (attackers = ∅) then
13: u.STATE← accepted
14: if sendMsg(ρ,u) = terminate then break
15: attackers← sort attackers in decreasing order of preference.
16: /* Enqueue attackers after decomposing them. */
17: for each A ∈ attackers do
18: a← node for argument A
19: a.parent← u
20: a.STATE← nil
21: enqueue a in f ringe /* See details in text. */
22: if (u.STATE = accepted) then return true
23: if (u.STATE = rejected) then return false

Algorithm 4 sendMsg(Node c,Node p).
1: /* Try to evaluate node p given new information in c.STAT E */
2: if p 6= nil then
3: if c.STATE = accepted then p.STATE← rejected
4: else if (∀ children q of p, q.STATE 6= rejected) then p.STATE← accepted
5: /* If p was successfully evaluated, try to evaluate its parent by sending message upward. */
6: if p.STATE 6= nil then
7: return sendMsg(p, p.parent)
8: else
9: return continue

10: else
11: return terminate /* The root node has been evaluated. */

support H (undercutters), or the negation of its head h (rebutters). Every node maintains a three-
valued state variable STATE ∈ {nil,accepted,rejected}. The nil state denotes that the value of
the node is not yet known, and a node is initialized to this state when it is added to the tree.

The algorithm recurses down the dialog tree until a node is found that has no attackers (line 12).
Such a node is accepted in line 13, that is, the conjunction of Eq. (24) is trivially true, and its STATE
is propagated upwards toward the root to the parent using subroutine sendMsg (Algorithm 4). Every

320

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Algorithm 5 Finds all attackers of input argument a in knowledge base K = 〈Σ,Ψ〉:
getAttackers(a = (H,h))

1: attackers←∅

2: /* Get all undercutters or rebutters of a. */
3: for all propositions ϕ ∈ H ∪{h} do
4: /* Get all defeaters of proposition ϕ. */
5: for all rules (Φ1∧Φ2 . . .∧Φn =⇒ ¬ϕ) ∈Ψ do
6: /* Find all propositionalizations of the rule whose consequent matches ¬ϕ. */
7: for all subsets {ϕ1,ϕ2 . . . ,ϕn} of Σ s.t. Φ1 ≡ ϕ1,Φ2 ≡ ϕ2 . . . Φn ≡ ϕn do
8: d← ({ϕ1∧ϕ2 . . .ϕn},¬ϕ) /* Create defeater. */
9: /* Is the defeater an attacker? */

10: if ¬(a�π d) then
11: attackers← attackers∪{d}
12: return attackers

time a node receives a message from a child, if the message is accepted, the node is rejected (line
3 of Algorithm 4), otherwise the node is accepted if all its children has been evaluated to rejected
(line 4 of Algorithm 4). The subroutine sendMsg then proceeds recursively by forwarding a message
to the parent whenever a node has been evaluated (line 7). If the root is reached and evaluated, the
message is sent to its parent, which is nil. In this case, the subroutine returns the special keyword
terminate back to the caller, indicating that the root has been evaluated and thus the main algorithm
(Algorithm 3) can terminate. The caller can be either the subroutine sendMsg, in which case it
pushes the returned message up the method-calling stack, or the top-down algorithm in line 14, in
which case its “while” loop is terminated.

An important part of the algorithm is yet underspecified, namely the order in which the attackers
of a node are explored in the tree (i.e., the priority with which nodes are enqueued in line 21). This
affects the order of expansion of the nodes in the dialog tree. Possible orderings are depth-first,
breadth-first, iterative deepening, as well as informed searches such as best-first when a heuristic
is available. In our experiments we used iterative deepening because it combines the benefits of
depth-first and breadth-first search, that is, small memory requirements on the same order as depth-
first search (i.e., on the order of the maximum number of children a node can have) but also the
advantage of finding the shallowest solution like breadth-first search. We also used a heuristic for
enqueuing the children of a node. According to iterative deepening, the position in the queue of the
children of a node is specified relative to other nodes, but not relative to each other. We therefore
specified the relative order of the children according to the value of the preference function: children
with higher preference are enqueued first (line 15 of the top-down algorithm), and thus, according
to iterative deepening, would be dequeued first.

5.1 Computability of the Top-Down Algorithm

An open question is whether the top-down algorithm is computable, that is, whether it always ter-
minates. In this section we prove that it is. To prove this we need to show that under certain general
conditions the acceptability of an argument a can always be determined, that is, that the algorithm
always terminates. This is proved by the following theorem.

321

BROMBERG AND MARGARITIS

Theorem 21. Given an arbitrary triplet t = (X ,Y | Z), and a PAF 〈A ,R ,π〉 with a strict preference
relation π, Algorithm 3 with input t over 〈A ,R ,π〉 terminates.

The proof consists on showing that the path from the root a to any leaf is always finite. For that,
the concept of an attack sequence is needed.

Definition 22. An attack sequence is a sequence 〈a1,a2, . . . ,an〉 of n arguments such that for every
2≤ i≤ n, ai attacks ai−1.

By the manner in which the top-down algorithm constructs the dialog tree it is clear that any path
from the root to a leaf is an attack sequence. It therefore suffices to show that any such sequence is
finite. This is done by the following theorem.

Theorem 23. Every attack sequence 〈a1,a2, . . . ,an〉 in a PAF 〈A ,R ,π〉 with strict π and finite A is
finite.

Intuitively, if the preference relation is strict then an element can attack its predecessor in the
sequence but not vice versa. Since the set of arguments A is finite, the only way for an attack
sequence to be infinite is to contain a cycle. In that case, an argument would be attacking at least
one of its predecessors, which cannot happen in a PAF with a strict preference relation. We present
formal proofs of Theorems 21 and 23 in Appendix A.

We thus arrived at the important conclusion that, under a strict preference function and a finite
argument set, the state of any argument is computable. As we showed in Section 3.3, the preference
function for independence knowledge bases is strict, and thus the computability of the top-down
algorithm is guaranteed.

5.2 Computational Complexity of the Top-Down Algorithm

Since Algorithm 3 is a tree traversal algorithm, its time complexity can be obtained by techniques
contained in standard algorithmic texts, for example, Cormen et al. (2001). The actual performance
depends on the tree exploration procedure. In our case we used iterative deepening due to its linear
memory requirements in d, where d is the smallest depth at which the algorithm terminates. Iterative
deepening has a worst-time time complexity of O(bd), where b is an upper bound on the dialog tree
branching factor. Therefore, for a constant b > 1 the execution time is exponential in d in the
worst case. Furthermore, for the case of independence tests, b itself may also be exponential in n
(the number of variables in the domain). This is because the inference rules of Eqs. (5) and (6)
are universally quantified, and therefore their propositionalization (lines 7–11 of Algorithm 5), may
result in an exponential number of rules with the same consequent (attackers). A tighter bound may
be possible but, lacking such a bound, we introduce in the next section an approximate top-down
algorithm, which reduces the running time to polynomial. As we show in our experiments, the use
of this approximation does not appreciably affect the accuracy improvement due to argumentation.

6. The Approximate Top-Down AIT Algorithm

As the top-down algorithm has a theoretically exponential running time in the worst case, we hereby
present a practical polynomial-time approximation of the top-down algorithm. We make use of
two approximations: (a) To address the exponential behavior due to the depth of the dialog tree
we apply a cutoff depth d for the process of iterative deepening. (b) To address the potentially

322

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

exponential size of the branching factor b (which equals the maximum number of defeaters of
any argument appearing in the dialog tree) we limit the number of defeaters of each node—thus
bounding the number of its attackers/children—to a polynomial function of n (the domain size)
during the propositionalization process of Algorithm 5 (lines 7–11). Let (H,h) be an argument and
let ϕ ∈ H ∪{h} be one of its propositions, as in line 3 of Algorithm 5. The set of attackers Σϕ of
(H,h) consists of all rules {ϕ1∧ϕ2 . . .∧ϕk =⇒ ¬ϕ} of Σ, for some constant upper bound k on the
size of their support. If ϕ = (X,Y |Z) and ϕi = (Xi,Yi |Zi) for all 1≤ i≤ k, then our approximation
generates and uses a subset of Σϕ in the dialog tree such that

|X|− c ≤ |Xi| ≤ |X|+ c

|Y|− c ≤ |Yi| ≤ |Y|+ c (25)

|Z|− c ≤ |Zi| ≤ |Z|+ c

where | · | denotes set cardinality, and c is a user-specified integer parameter that defines the approx-
imation. We call this the approximate top-down algorithm. The computational complexity of the
approximate top-down algorithm is polynomial in n, as shown in the next section.

6.1 Test Complexity of the Approximate Top-Down Algorithm

In this section we prove that the number of statistical tests required by the Approximate Top-Down
algorithm is polynomial in n. As described in the previous section, the approximate algorithm
generates a bounded number of attackers for each proposition in the argument corresponding to
some node in the dialog tree. A bound on the number of the possible attackers can be defined by
the approximation of Eq. (25). These equations dictate that the size of each possible set Xi in some
proposition (Xi,Yi | Zi) of some attacker of proposition (X,Y | Z) is between |X|+ c and |X| − c
(inclusively). As the number of elements that can be members of Xi is bounded by n (the domain
size), this produces at most n2c+1 possible instantiations for set Xi. Similarly, the number of possible
instantiations for Yi and Zi is also n2c+1. Therefore, an upper bound for the number of matches to
some proposition in the antecedent of an attacking rule is O(n6c+3) for some constant c. As there are
r rules in the rule set and up to k propositions in each rule for some constants r and k (for example,
r = 5 and k = 3 for Eq. (5) and r = 8 and k = 4 for Eq. (6)), an upper bound on the number of
children of a node in the dialog tree is O(rkn6c+3), and thus an upper bound on the number of nodes
in the dialog tree of depth d is O((rk)dnd(6c+3)). As we demonstrate in our experiments, this is a
rather loose upper bound and the performance of the approximate top-down algorithm is reasonable
in practice, but it does serve to show that the theoretical worst-case performance is polynomial in n.
In the experiments shown in the next section we used c = 1 and d = 3.

7. Experimental Results

We conducted experiments on sampled and real-world data sets for the purpose of (a) evaluating
the accuracy improvement of the argumentative test (both the exact and approximate versions) over
its statistical counterpart; (b) demonstrating the performance improvements that can be achieved by
the approximate version compared to the exact counterpart, without significant reduction in accu-
racy improvement; and (c) evaluating the improvements that result by the use of the argumentative
framework for causal discovery. We address these issues below.

323

BROMBERG AND MARGARITIS

7.1 Comparative Evaluation of Bottom-Up, Exact Top-Down, and Approximate Top-Down
Argumentative Tests

In this section we demonstrate that the argumentation approach, implemented either by the (exact)
bottom-up or the exact top-down algorithm (Algorithm 3), improves the accuracy of independence
tests on small data sets. We also show that the approximate top-down algorithm (see Section 6)
has accuracy performance improvements similar to its exact counterpart but significantly better
execution times (orders of magnitude), that make it more practical and usable for larger domains.
As the output of the bottom-up algorithm is guaranteed to be equal to the exact top-down algorithm
as Theorem 9 of Section 3, we omit accuracy results for the bottom-up algorithm here.

As the exact algorithm is impractical for large domains, for the present comparison we sampled
data sets from two randomly generated Bayesian networks with n = 8 nodes. The networks were
generated using BNGenerator (Ide et al., 2002), a publicly available Java package, with maximum
degree per node τ equal to 3 and 7 to evaluate the performance in sparsely as well as densely
connected domains. A large data set D was sampled from each network and our experiments were
conducted on subsets of it containing an increasing number of data points N. This was done in order
to assess the accuracy on varying conditions of reliability, as the reliability of a test varies (typically
increases) with the amount of data available. To reduce variance, each experiment was repeated for
ten data subsets of equal size, obtained by permuting the data points of D randomly and using the
first N of them as input to our algorithms.

We first compare the accuracy of argumentative tests versus their purely statistical counterparts
(i.e., the G2 test) on several data sets sampled from randomly generated Bayesian networks. Sam-
pled data experiments have the advantage of a more precise estimation of the accuracy since the
underlying model is known. We present experiments for two versions of the exact top-down argu-
mentative test, one using Pearl’s general axioms of of Eq. (5), denoted AITt-G, and another that
uses Pearl’s “directed” axioms of Eq. (6), denoted AITt-D, as well as two versions of the approxi-
mate top-down argumentative test, denoted ÂITt-G and ÂITt-D respectively. We abbreviate purely
statistical independence tests as SIT.

We report the estimated accuracy, which, for each data set, is calculated by comparing the
result of a number of conditional independence tests (SITs or AITs) on data with the true value of
independence, computed by querying the underlying model for the conditional independence of the
same test using d-separation. Since the number of possible tests is exponential, we estimated the
independence accuracy by randomly sampling a set T of 1,000 triplets (X ,Y,Z), evenly distributed
among all possible conditioning set sizes m ∈ {0, . . . ,n− 2}, that is, 1000/(n− 1) tests for each
m. The independence or dependence value of the triplets (in the true, underlying model) were
not controlled, but left to be decided randomly. This resulted in a non-uniform distribution of
dependencies and independences. For instance, in the experiments shown next (n = 8, τ = 3,7), the
average proportion of independences vs. dependencies was 36.6% to 63.4% respectively for τ = 3,
and 11.4% to 88.6% respectively for τ = 7. Denoting a triplet in T by t, by Itrue(t) the result of a
test on t performed on the underlying model, and by Idata-Y (t) the results of performing a test on t

of type Y on data, for Y equal to SIT, AITt-G, AITt-D, ÂITt-G, or ÂITt-D, the estimated accuracy
of test type Y is defined as

âccdata
Y =

1
|T |

∣∣∣∣
{

t ∈ T | Idata-Y (t) = Itrue(t)
}∣∣∣∣.

324

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, approx.) − accuracy(SIT)

accuracy(AIT, exact) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 7, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, approx.) − accuracy(SIT)

accuracy(AIT, exact) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, approx.) − accuracy(SIT)

accuracy(AIT, exact) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 7, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, approx.) − accuracy(SIT)

accuracy(AIT, exact) − accuracy(SIT)

Figure 2: Accuracy comparison of statistical tests (SIT) vs. exact and approximate argumentative
tests for domain size n = 8 and maximum degree per node τ = 3,7. The histograms show
the absolute value of the accuracy while the line curves show the difference between SIT
and the argumentative tests. 95% confidence intervals are also shown for the line graphs.
Top row: General axioms. Bottom row: Directed axioms.

Figure 2 (top row) shows a comparison of the SIT with the exact and approximate top-down
argumentative test over the general axioms for data set with increasing number of data points. The
figure shows two plots for τ = 3,7 of the mean values (over runs for ten different data sets) of âccdata

SIT ,
âccdata

AITt-G, and âccdata
ÂITt-G

(histograms) and the difference between the accuracies of the AIT tests
and the statistical one (line graphs) for various data set sizes N. A positive value of the difference
corresponds to an improvement of the argumentative test over SIT. The plots also show the statistical
significance of this difference with 95% confidence intervals (error bars), that is, the interval around
the mean value that has a 0.95 probability of containing the true difference. The figure demonstrates
that there exist modest but consistent and statistically significant improvements in the accuracy
of both the exact and approximate argumentative tests over the statistical test. We can observe
improvements over the entire range of data set sizes in both cases with maximum improvements of
up to 9% and 6% for the exact and approximate cases respectively (at τ = 3 and N = 600).

In certain situations where the experimenter knows that the underlying distribution belongs to
the class of Bayesian networks, it is appropriate to use the specific axioms of Eq. (6) instead of the
general axioms of Eq. (5). The bottom row of Figure 2 presents the same comparison as the top

325

BROMBERG AND MARGARITIS

row but for the exact and approximate argumentative tests AITt-D and ÂITt-D that use the directed
axioms instead of the general ones. As in the case for AIT using the general axioms, we can observe
statistically significant improvements over the entire range of data set sizes in both cases. In this
case however, the improvements are larger, with maximum increases in the accuracy of the exact
and approximate test of up to 13% and 9% respectively (again for τ = 3 and N = 600).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 160 data points, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6
A

cc
ur

ac
y

(%
)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 160 data points, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 900 data points, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 900 data points, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 5000 data points, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 5000 data points, general axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

Figure 3: Accuracy comparison of SIT vs. exact (AITt-G) and approximate (ÂITt-G) argumen-
tative tests over the general axioms for increasing conditioning set sizes. The six plots
correspond to maximum degrees per node τ = 3,7, and data set sizes N = 160,900 and
5000.

326

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 160 data points, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 160 data points, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 900 data points, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 900 data points, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 5000 data points, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Conditioning set size (number of variables)

Accuracy comparison of SIT and AIT on sampled data
n = 8 variables, τ = 3, N = 5000 data points, directed axioms

Statistical test (SIT)
Argumentative test (AIT, exact)

Argumentative test (AIT, approx.)
accuracy(AIT, exact) − accuracy(SIT)

accuracy(AIT, approx) − accuracy(SIT)

Figure 4: Same as Figure 3 but for AIT using the directed axioms instead of the general ones.

We also evaluated the accuracy of these tests for increasing conditioning set sizes. Figures 3
and 4 show a comparison of the SIT with the exact and approximate top-down argumentative test
using the general and directed axioms respectively, for accuracies over increasing conditioning set
size for data sizes N = 160,900, and 5000 (different rows). We can observe statistically significant
improvements over the entire range of conditioning set sizes in all twelve graphs. Except in one
case (directed axioms, N = 5000, τ = 3), all graphs show an upward trend in accuracy for increasing
conditioning set size, representing a positive impact of the argumentative approach that increases
with a decrease in test reliability, that is, increasing conditioning set size.

327

BROMBERG AND MARGARITIS

We also compared the execution times of the bottom-up, exact top-down and approximate top-
down algorithms on the same data sets. To run the bottom-up algorithm we generated the set of
all propositional arguments possible, that is, arguments of the form ({σ},σ), by iterating over all
possible triplets (X,Y | Z), and inserted them in the knowledge base together with their preference,
as described in Section 3.1. Similarly, for the set of axioms that we used in each case, that is,
either the general (Eq. (5)) or the specific ones (Eq. (6)), we iterated over all possible matches
of each rule, inserting the corresponding (single-headed and decomposed) instantiated rule in the
knowledge base again together with its preference. The reason for including all propositional and
rule-based arguments in our IKB is to allow the argumentation framework to consider all possible
arguments in favor of or against an independence query. We compared the bottom-up algorithm
AITb, the exact top-down algorithms AITt, and the approximate top-down algorithm ÂITt. For
this, we measured the time it takes to discover the structure of a Bayesian networks using three
versions of the PC algorithm (Spirtes et al., 2000), each using one of the three argumentative tests
AITb, AITt, or ÂITt to conduct the independence tests. As usual, we consider two versions of each
test AITb, AITt, and ÂITt, one that uses the general axioms of Eq. (5), that is, AITb-G, AITt-G,
and ÂITt-G, respectively, and one that uses the specific axioms of Eq. (6) (applicable to Bayesian
networks), that is, AITb-D, AITt-D, and ÂITt-D, respectively. The data sets used are the same as
the ones used in the accuracy comparisons above.

Figure 5 plots the execution time of argumentative tests AITb-G vs. AITt-G vs. ÂITt-G (top
row) and AITb-D vs. AITt-D vs. ÂITt-D (bottom row) for tests that were conducted by the PC
algorithm while learning the structure. Note that both the x and y-axes are plotted in log-scale. We
can observe improvements in the execution time of the exact top-down algorithm over that of the
bottom-up algorithm of an order of magnitude over the entire range of data set sizes in all four
plots. We can also see improvement of a similar order between the exact and approximate top-
down argumentative algorithms. For instance, for the general axioms and τ = 3 (top-left plot), the
execution time for N = 5000 is 2749 seconds for the bottom-up against 107 seconds for the exact
top-down and 15 seconds for the approximate top-down algorithm. We see even more pronounced
execution time improvements when using the directed axioms (bottom row of Fig. 5).

The execution-time results demonstrate that the exact top-down algorithm performs significantly
better than the bottom-up algorithm, while producing the exact same output (according to Theorem
9 of Section 3). This implies a clear advantage of using the top-down over the bottom-up algorithm.
Furthermore, we also saw that the approximate top-down algorithm performs similarly in terms of
accuracy improvement while having polynomial worst-case execution time and in practice being
several orders of magnitude faster than the exact top-down algorithm, which is exponential in the
worst-case. As in the next two sections we continue our evaluation on domains significantly larger
than the n = 8 variables that we examined here, it would be difficult or impractical for the exact
algorithms to be employed. For these reasons in the following experiments we use the more practical
approximate algorithm, which can be applied to larger domains.

7.2 Causal Discovery in Larger Domains

We also conducted experiments that demonstrate the performance of the approximate top-down al-
gorithm by (a) showing its applicability to large domains, and (b) demonstrating positive improve-
ments in accuracy of argumentative tests on the learning of the structure of Bayesian networks, the
main problem faced by causal discovery algorithms. In the following experiments we used the PC

328

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set size N (number of data points)

Execution time comparison of AIT algorithms on sampled data
n = 8 variables, τ = 3, general axioms

Bottom-up (exact)
Top-down exact

Top-down approximate

 1

 10

 100

 1000

 10000

 10 100 1000 10000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set size N (number of data points)

Execution time comparison of AIT algorithms on sampled data
n = 8 variables, τ = 7, general axioms

Bottom-up (exact)
Top-down exact

Top-down approximate

 1

 10

 100

 1000

 10000

 10 100 1000 10000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set size N (number of data points)

Execution time comparison of AIT algorithms on sampled data
n = 8 variables, τ = 3, directed axioms

Bottom-up (exact)
Top-down exact

Top-down approximate

 1

 10

 100

 1000

 10000

 10 100 1000 10000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set size N (number of data points)

Execution time comparison of AIT algorithms on sampled data
n = 8 variables, τ = 7, directed axioms

Bottom-up (exact)
Top-down exact

Top-down approximate

Figure 5: Execution time comparison for the PC algorithm when it uses the bottom-up and ex-
act top-down and approximate top-down argumentative tests to learn the structure of a
Bayesian network from data sampled from Bayesian models with domain size n = 8,
maximum degrees τ = 3,7. The bars show the absolute value of the running time using a
logarithmic scale. Top row: general axioms. Bottom row: directed axioms.

algorithm. We compared the true structure of the underlying model to the resulting structure of the
PC algorithm when it uses SITs as independence tests, denoted PC-SIT, and its output when it uses
argumentative independence tests, denoted PC-ÂITt-D, when using the directed axioms.

We evaluated the resulting networks by their ability to accurately represent the true indepen-
dences in the domain, calculated by comparing the results (true or false) of a number of condi-
tional tests conducted using d-separation on the output networks (PC-SIT or PC-ÂITt-D). Denoting
by T this set of 2,000 triplets, by t ∈ T a triplet, by Itrue(t) the result of a test performed on the un-
derlying model, and by IPC-Y (t) the result of performing a d-separation test on the network output

by the PC algorithm using the Y test, Y equal to SIT or ÂITt-D, the estimated accuracy is defined
as

âccPC
Y =

1
|T |

∣∣∣∣
{

t ∈ T | IPC-Y (t) = Itrue(t)
}∣∣∣∣. (26)

We considered data sampled from randomly generated Bayesian networks of sizes n = 24, and
maximum degrees τ = 3,7. For each network we sampled ten data sets, and, for each data set, we

329

BROMBERG AND MARGARITIS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 25000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT when used by the PC algorithm
n = 24 variables, τ = 3, directed axioms

Statistical test (SIT)
Argumentative test (AIT, approx.)

accuracy(AIT, approx.) − accuracy(SIT)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 25000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT when used by the PC algorithm
n = 24 variables, τ = 7, directed axioms

Statistical test (SIT)
Argumentative test (AIT, approx.)

accuracy(AIT, approx.) − accuracy(SIT)

Figure 6: Comparison of statistical tests (SIT) vs. approximate argumentative tests on the directed
axioms (ÂITt-D) for data sets sampled from Bayesian models for domain size n = 24 and
maximum degrees τ = 3,7.

conducted experiments on subsets of D containing an increasing number of data points. We report
the average over the ten data sets of the estimated accuracy calculated using Eq. (26), for Y = SIT
or ÂITt-D, as well as the difference between the average accuracies including the 95% confidence
interval for the difference.

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set size N (number of data points)

Execution time of the PC algorithm using approximate AIT
n = 24 variables, directed axioms

τ=3
τ=7

Figure 7: Execution times for the PC algorithm using the approximate argumentative test on the
directed axioms (ÂITt-D) on data sets sampled from Bayesian models for domain size
n = 24 and maximum degrees τ = 3,7. For the approximate AIT test we limited the
depth of the dialog tree to 3 and its the branching factor as described in Section 6.

Figure 6 shows a comparison of the argumentative tests ÂITt-D using the directed axioms with
the corresponding SIT. The figure shows two plots for different values of τ of the mean values (over
runs for ten different data sets) of âccPC

SIT and âccPC
ÂITt-D

(histograms), the difference between these

330

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

averages (line graph), and the 95% confidence intervals for the difference (error bars), for different
data set sizes N. As usual, a positive value of the difference corresponds to an improvement of
ÂITt-D over SIT. As in practically all experiments so far, we have statistically significant improve-
ments over the entire range of data set sizes, with maximum improvements of up to 20% for τ = 3,
N = 25000, and τ = 7, N = 900. The corresponding execution times for the entire PC algorithm are
shown in Fig. 7. We can make two observations from this graph. One, the cost is significantly lower
for sparse domains, which benefits real-world application domains that are sparse. The second ob-
servation is that the execution time scales linearly with the number of data points; this exhibits the
same behavior as the use of a SIT test in PC, as each test needs to scan the data set once to compute
the contingency table and relevant test statistics.

In summary, these results demonstrate that the approximate argumentative test is practical for
larger domains and can result in positive, statistically significant accuracy improvements when used
for causal discovery. However, the cost of AIT for large data sets, although not prohibitive, can be
non-negligible. Therefore the accuracy benefits of AIT vs. a SIT must be carefully weighed off the
ability of the user to expend the extra computation. Note that the practicality of the approximate
algorithm also depends on the parameters used (the cutoff depth of iterative deepening and the
branching factor limit—see Section 6); different parameter values or alternative ways of limiting
the size of the dialog tree may be needed for even larger domains.

7.3 Real-world and Benchmark Data Experiments

While the sampled data set studies of the previous section have the advantage of a more controlled
and systematic study of the performance of the algorithms, experiments on real-world data are
necessary for a more realistic assessment. In this section we present experiments on a number of
real-world and benchmark data sets obtained from the UCI machine learning repository (D. J. New-
man and Merz, 1998) and the Knowledge Discovery Data repository (Hettich and Bay, 1999). As
in the sampled data case of the previous section, for each data set D, we conducted experiments
on subsets of D containing an increasing number of data points N to assess the performance of the
independence tests on varying conditions of reliability. Again, to reduce variance we repeated each
experiment ten times, each time choosing a different randomly selected data subset of equal size.

Because for real-world data sets the underlying model is unknown, we could only be sure the
general axioms of Eq. (5) apply. We therefore only used these axioms in this section. Also, as
mentioned in the previous section, because some of the data sets have much larger domains (e.g.,
the alarm data set contains 37 variables), and given the exponential nature of the exact algorithms
we could only perform experiments for the approximate version of the argumentative test. For
these reasons, in the following experiments we only report the accuracy of ÂITt-G, the approximate
argumentative independence test defined over the general axioms. Unfortunately, for real-world data
the underlying model is typically unknown and therefore it is impossible to know the true value of
any independence. We therefore approximate it by a statistical test on the entire data set, and limit
the size of the data set subsets that we use up to a third of the size of the entire data set. This
corresponds to the hypothetical scenario that a much smaller data set is available to the researcher,
allowing us to evaluate the improvement of argumentation under these more challenging situations.
Again, as in the previous two sections, for comparison we sampled 2,000 triplets and calculated the
accuracy as a fraction of tests correct, where for the true value of independences and dependences
we used the method just described.

331

BROMBERG AND MARGARITIS

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on real-world data
Data set: cmc, general axioms

accuracy(AIT, approx.) − accuracy(SIT)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on real-world data
Data set: letterRecognition, general axioms

accuracy(AIT, approx.) − accuracy(SIT)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on real-world data
Data set: alarm, general axioms

accuracy(AIT, approx.) − accuracy(SIT)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000 10000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on real-world data
Data set: nursery, general axioms

accuracy(AIT, approx.) − accuracy(SIT)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on real-world data
Data set: car, general axioms

accuracy(AIT, approx.) − accuracy(SIT)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000

A
cc

ur
ac

y
(%

)

Data set size N (number of data points)

Accuracy comparison of SIT and AIT on real-world data
Data set: flare2, general axioms

accuracy(AIT, approx.) − accuracy(SIT)

Figure 8: Difference in the mean value of the accuracy ÂITt-G with the mean value of the accuracy
of SIT for a number of real-world data sets. The error bars denote the 95% confidence
interval of the difference.

Figure 8 and Table 1 show the result of our comparison between the argumentative test ÂITt-G
and statistical test SIT for real-world data sets. In the table, the best-performing method is shown
in bold. The figure contains 6 plots, one for each data set, depicting the difference between the
mean value of the accuracy of ÂITt-G and that of SIT, where as usual a positive value denotes an
improvement of ÂITt-G over SIT. While in a few cases the average difference is negative (e.g., data
set cmc, N = 40), in each case the negative value is not statistically significant as the confidence in-

332

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Data set car cmc flare2 letterRecognition nursery alarm
Domain size 7 10 13 17 9 37
Data set size 1730 1475 1067 20002 12962 20003

SIT 80.1 77.8 77.0 47.9 83.3 76.7
N = 40 ÂITt-G 80.1 77.5 77.1 47.8 83.8 76.7

ÂITt-G−SIT 0.0 ± 0.7 -0.3 ± 0.6 0.1 ± 0.3 -0.1 ± 0.2 0.4 ± 0.1 0.0 ± 0.4
Runtime of ÂITt-G (ms) 0.56 1.07 2.61 4.19 0.88 52.06

SIT 86.7 84.1 85.5 50.7 86.1 84.3
N = 240 ÂITt-G 88.6 84.7 86.9 51.0 87.2 85.1

ÂITt-G−SIT 1.9 ± 0.6 0.5 ± 1.2 1.3 ± 0.8 0.2 ± 0.4 1.1 ± 0.4 0.8 ± 0.3
Runtime of ÂITt-G (ms) 1.37 5.19 8.73 90.50 1.84 202.05

SIT 55.8 88.5 88.6
N = 600 ÂITt-G 57.3 89.3 89.8

ÂITt-G−SIT 1.5 ± 0.5 0.8 ± 0.1 1.2 ± 0.4
Runtime of ÂITt-G (ms) 575.53 4.37 547.77

SIT 63.3 89.7 90.8
N = 1200 ÂITt-G 64.3 91.2 92.0

ÂITt-G−SIT 1.0 ± 0.3 1.5 ± 0.3 1.2 ± 0.4
Runtime of ÂITt-G (ms) 2008.76 14.05 1151.05

SIT 73.8 94.1 95.2
N = 3500 ÂITt-G 76.5 95.4 96.3

ÂITt-G−SIT 2.6 ± 0.7 1.3 ± 0.3 1.1 ± 0.3
Runtime of ÂITt-G (ms) 24540.51 76.48 3895.2

Table 1: Average accuracies (in percentage) of SIT and ÂITt-G, their differences (denoted
ÂITt-G− SIT in the table), the 95% confidence interval for the difference, and the av-
erage runtime per test (in ms) for ÂITt-G for several real-world and benchmark data
sets. For each data set the table shows these quantities for number of data points
N = 40,240,600,1200,3500. The best performing algorithm (ÂITt-G or SIT, with re-
spect to accuracy) is indicated in bold. Empty cells correspond to cases where one third of
the data set was smaller than the value of N in that column.

terval contains a portion of the positive half-plane. The figure demonstrates a clear advantage of the
argumentative approach, with all data sets reaching statistically significant positive improvements
in accuracy of up to 3% and all confidence intervals covering positive values either partially or
completely. The table also shows the average execution time (in ms) for the ÂITt-G tests evaluated.

8. Conclusion

We presented a framework for addressing one of the most important problems of independence-
based structure discovery algorithms, namely the problem of unreliability of statistical independence
tests. Our main idea was to recognize the existence of interdependences among the outcomes of
conditional independence tests—in the form of Pearl’s axiomatic characterization of the conditional
independence relation—that can be seen as integrity constraints and exploited to correct unreliable
statistical tests. We modeled this setting as a knowledge base containing conditional independences
that are potentially inconsistent, and used the preference-based argumentation framework to rea-
son with and resolve these inconsistencies. We presented in detail how to apply the argumentation
framework to independence knowledge bases and how to compute the preference among the inde-
pendence propositions. We also presented a number of algorithms, both exact and approximate,
for implementing statistical testing using this framework. We analyzed the approximate algorithm

333

BROMBERG AND MARGARITIS

and proved that is has polynomial worst-case execution time. We also experimentally verified that
its accuracy improvement is close to the exact one while providing orders of magnitude faster ex-
ecution, making possible its use for causal discovery in large domains. Overall, our experimental
evaluation demonstrated statistically significant improvements in the accuracy of causal discovery
for the overwhelming majority of sampled, benchmark and real-world data sets.

Appendix A. Computability of the Argumentative Independence Test

In this appendix we prove that the argumentative test terminates, a property that we call its com-
putability. Some of the theorems and lemmas presented are not original work but adaptations of
well known properties of relations. We include them to allow a complete exposition of the proof of
computability, given by Theorem 21. We first introduce some notation. We denote independence
propositions (e.g., (X⊥⊥Y | Z)) by σ and their negation (e.g., (X 6⊥⊥Y | Z)) by ¬σ. We abbreviate
their corresponding propositional arguments ({σ},σ) and ({¬σ},¬σ) by aσ and a¬σ, respectively,
and we will refer to a¬σ as the negation of aσ (and vice versa). Also, we use the predicates A(a),
R(a), Ab(a) to denote the fact the argument a is accepted, rejected, or in abeyance, respectively.

For completeness we repeat here the definition of strict and transitive preference relation.

Definition 13. We say preference relation π over arguments is strict if the ordering of arguments
induced by it is strict and total, that is, for every pair of arguments a and b,

a�π b ⇐⇒ ¬
(
b�π a

)
. (27)

Definition 14. We say that preference relation π over arguments is transitive if, for every three
arguments a, b and c, (

a�π b
)
∧

(
b�π c

)
=⇒

(
a�π c

)
.

Lemma 24. A strict preference relation π satisfies the condition that for every pair of arguments
such that a defeats b and b defeats a, it is the case that a attacks b or b attacks a, that is, at least
one of a and b attacks the other.

Proof We prove by contradiction: Let us assume that a defeats b and b defeats a but neither a
attacks b nor b attacks a. By definition of the attack relation (Definition 15),

¬
(
a attacks b

)
=⇒ ¬

(
¬(b�π a)

)
=⇒ b�π a

and
¬

(
b attacks a

)
=⇒ ¬

(
¬(a�π b)

)
=⇒ a�π b.

However, this is a contradiction since, by assumption, the preference ordering is strict, and therefore
it cannot be true that both a�π b and b�π a are true at the same time.

Lemma 25. A strict preference π satisfies the condition that for every pair a and b of arguments, it
is not the case that both a attacks b and b attacks a, that is, there can be no mutual attack.

Proof We prove by contradiction. Let us consider two mutually attacking arguments a and b. By
the definition of the attack relation, and because π is a total order, we have that

a attacks b =⇒ ¬(b�π a) =⇒
(
a�π b∨a≡π b

)

334

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

and
b attacks b =⇒ ¬(a�π b) =⇒

(
b�π a∨b≡π a

)

where a ≡π b means a is equally preferable to b. However, equality of preference is not possible
in a strict preference relation. Therefore it must be the case that a�π b and b�π a, which is a
contradiction of Eq. (27), again due to strictness.

We next prove that no argument is in abeyance if the preference relation over arguments is strict.
For that, we first prove that an argument in abeyance is always attacked by at least another argument
in abeyance.

Lemma 8. For every argument a,

Ab(a) =⇒ ∃b ∈ attackers(a),Ab(b).

Proof By definition, an argument a is in abeyance if it is neither accepted nor rejected. Applying
the definitions of acceptance and rejection and manipulating the Boolean formulae we obtain,

Ab(a) ⇐⇒ ¬A(a)∧¬R(a)

⇐⇒ ¬
(
∀b ∈ attackers(a),R(b)

)
∧¬

(
∃b ∈ attackers(a),A(b))

)

⇐⇒
(
∃b ∈ attackers(a),¬R(b)

)
∧

(
∀b ∈ attackers(a),¬A(b))

)

⇐⇒
(
∃b ∈ attackers(a),(A(b)∨Ab(b))

)
∧

(
∀b ∈ attackers(a),¬A(b))

)

⇐⇒
(
∃b ∈ attackers(a),Ab(b)

)
∧

(
∀b ∈ attackers(a),¬A(b))

)

=⇒ ∃b ∈ attackers(a),Ab(b).

Definition 22. An attack sequence is a sequence 〈a1,a2, . . . ,an〉 of n arguments such that for every
2≤ i≤ n, ai attacks ai−1.

Lemma 26. Let 〈A ,R ,π〉 be a PAF with a strict and transitive preference relation π. Then, no
argument can appear more than once in any attack sequence, that is, for every attack sequence
〈a1,a2, . . . ,an〉 and every pair of integers i, j ∈ [1,n] such that i 6= j, ai 6= a j.

Proof
We first note that by definition of the attack relation, it must be the case that for any two con-

secutive arguments ai, ai+1, it is true that ¬(ai �π ai+1). Since π is strict, this is equivalent to
ai+1�π ai (c.f. Eq. (27)). That is,

an�π an−1�π . . .�π a2�π a1 (28)

We now assume, for contradiction, there exists an argument a? that appears twice in the attack
sequence at indexes i? and j?, that is,

∃ i?, j? ∈ [1,n], i? 6= j?, such that ai? = a j? = a?.

335

BROMBERG AND MARGARITIS

Since no argument defeats itself, it cannot attack itself, and thus the smallest possible attack
sequence with a repeated argument must have at least length 3. From this fact, Eq. (28), and tran-
sitivity, there must exist an argument b 6= a? such that a? �π b�π a?. This last fact implies that
a?�π b and b�π a? must hold, which contradicts strictness (Eq. (27)).

A corollary of this lemma is the following theorem.

Theorem 23. Every attack sequence 〈a1,a2, . . . ,an〉 in a PAF 〈A ,R ,π〉 with strict and transitive π,
and finite A is finite.

Proof Follows directly from Lemma 26 and the fact that A is finite.

We can now prove the main result of this section in the following theorem.

Theorem 21. Given an arbitrary triplet t = (X ,Y | Z), and a PAF 〈A ,R ,π〉 with a strict and
transitive preference relation π, and finite arguments set A , the top-down algorithm of Algorithm 3
run for input t over 〈A ,R ,π〉 terminates.

Proof In the tree traversed by the top-down algorithm, any path from the root to a leaf is an attack
sequence. Since for strict and transitive π, and finite A each such sequence is finite, the algorithm
always terminates.

Appendix B. Validity of the Argumentative Independence Test

In this section we prove the property of the argumentative independence test of deciding that an
input triplet (X ,Y | Z) evaluates to either independence or dependence, but not both or neither. We
call this property the validity of the test.

We start we proving that under the assumption of a strict and transitive preference relation, no
argument is in abeyance.

Theorem 20. Let 〈A ,R ,π〉 be a PAF with a strict and transitive preference relation π. Then no
argument a ∈ A is in abeyance.

Proof Let us assume, for contradiction, that there is an argument a in abeyance. From Lemma 8,
not only a has an attacker in abeyance, say argument b, but b also has an attacker in abeyance, and
so on. That is, we can construct an attack sequence starting at a that contains only arguments in
abeyance. Moreover, this sequence must be infinite, since the lemma assures as we always have at
least one attacker in abeyance. This is in direct contradiction with Theorem 23.

Corollary 27. For every argument a in a PAF 〈A ,R ,π〉 with strict and transitive π,

A(a) ⇐⇒ ¬R(a).

We now prove a number of lemmas that hold only for the sub-class of propositional arguments
(arguments whose support contains only one proposition, equal to the head of that argument). We
start with a lemma that demonstrates that it cannot be the case that an attacker of a propositional
argument aσ and an attacker of its negation a¬σ do not attack each other. The former must attack
the latter or vice versa.

336

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

Lemma 28. Let 〈A ,R ,π〉 be a PAF with a strict preference relation π, aσ ∈ A be a propositional
argument, and a¬σ its negation. For every pair of arguments b and c that attacks aσ and a¬σ
respectively,

(b attacks c)∨ (c attacks b).

Proof Since aσ and a¬σ are propositional arguments, their support contains the head and only the
head, and thus any defeater (i.e., rebutter or undercutter) must have as head ¬σ and σ, respectively,
that is, the head of b must be ¬σ and the head of c must be σ. Thus, b rebuts (and thus defeats) c
and vice versa. The lemma then follows directly from Lemma 24.

Lemma 29. Let 〈A ,R ,π〉 be a PAF with a strict preference relation π, and aσ and a¬σ be a propo-
sitional argument and its negation. Then,

R(aσ) =⇒ ¬R(a¬σ).

Proof By assumption, R(aσ). We assume, for contradiction, that R(a¬σ). Therefore, by the defi-
nition of rejection, ∃b ∈ attackers(aσ) such that A(b), and ∃c ∈ attackers(a¬σ) such that A(c). By
Lemma 28 b attacks c or c attacks b. In either case, an accepted argument is attacking an accepted
argument, which contradicts the definition of acceptance.

Lemma 30. Given a PAF 〈A ,R ,π〉with a strict preference relation π, every propositional argument
aσ ∈ A satisfies

A(aσ) =⇒ ¬A(a¬σ)

Proof We prove by contradiction. Let us assume that both aσ and a¬σ are accepted. Since aσ
and a¬σ are propositional arguments, they defeat each other. Then, by Lemma 24 aσ attacks a¬σ or
vice versa. In either case an accepted argument has an accepted attacker, which is a contradiction.

We now prove Theorem 19 that was introduced in Section 4, reproduced here for convenience.

Theorem 19. Given a PAF 〈A ,R ,π〉 with a strict and transitive preference relation π, every propo-
sitional argument aσ ∈ A and its negation a¬σ satisfy

A(aσ) ⇐⇒ R(a¬σ).

Proof The (=⇒) direction follows from Lemma 30 and Theorem 20. The (⇐=) direction follows
from Lemma 29 and Theorem 20.

In Section 4 we defined the following semantics for deciding on the dependence or independence
of an input triplet (X ,Y | Z):

({(X 6⊥⊥Y | Z)},(X 6⊥⊥Y | Z)) is accepted ⇐⇒ (X 6⊥⊥Y | Z) is accepted =⇒ (X 6⊥⊥Y | Z)

({(X⊥⊥Y | Z)},(X⊥⊥Y | Z)) is accepted ⇐⇒ (X⊥⊥Y | Z) is accepted =⇒ (X⊥⊥Y | Z) (29)

where acceptance is defined over an independence-based PAF as defined in Section 3.3. For this
argumentative test of independence to be valid, its decision must be non-ambiguous, that is, it must
decide either independence or dependence, but not both or neither. For that, exactly one of the
antecedents of the above implications must be true. Formally:

337

BROMBERG AND MARGARITIS

Theorem 18. For any input triplet σ = (X ,Y | Z), the argumentative independence test defined by
Eq. (29) produces a non-ambiguous decision, that is, it decides that σ evaluates to either indepen-
dence or dependence, but not both or neither.

Proof Let us denote (X⊥⊥Y | Z) by σt and (X 6⊥⊥Y | Z) by σf. Since strictness and transitivity of
the independence preference relation hold (proved in Section 3.3, lemmas 16 and 17 respectively),
Theorems 19 and 20 hold as well. From Theorem 20 we know that neither of the propositional ar-
guments is in abeyance. Thus, since aσt corresponds to the negation of aσf it follows from Theorem
19 that exactly one of them is accepted.

References

H. Abdi. The Bonferonni and Šidák corrections for multiple comparisons. In Neil Salkind, editor,
Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage, 2007.

A. Agresti. Categorical Data Analysis. Wiley, 2nd edition, 2002.

L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable arguments.
Annals of Mathematics and Artificial Intelligence, 34:197–215, 2002.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful ap-
proach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57
(1):289–300, 1995.

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under
dependency. Annals of Statistics, 29(4):1165–1188, 2001.

W. G. Cochran. Some methods of strengthening the common χ2 tests. Biometrics, 10:417–451,
1954.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
2nd edition, 2001.

C. L. Blake D. J. Newman, S. Hettich and C. J. Merz. UCI repository of machine learning databases.
Irvine, CA: University of California, Department of Information and Computer Science, 1998.

A. P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society,
41:1–31, 1979.

P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

P. Gärdenfors. Belief Revision. Cambridge Computer Tracts. Cambridge University Press, Cam-
bridge, 1992.

P. Gärdenfors and H. Rott. Belief revision. In Gabbay, D. M., Hogger, C. J. and Robinson, J.
A., editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 4.
Clarendon Press, Oxford, 1995.

338

IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

S. Hettich and S. D. Bay. The UCI KDD archive. Irvine, CA: University of California, Department
of Information and Computer Science, 1999.

Y. Hochberg. A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4):
800–802, December 1988.

J. S. Ide, F. G. Cozman, and F. T. Ramos. Generating random Bayesian networks with constraints
on induced width. Brazilian Symposium on Artificial Intelligence, Recife, Pernambuco, Brazil,
2002.

A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal of Logic and
Computation, 9(4):515–562, 1999.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT Press,
Cambridge, MA, 1994.

R. P. Loui. Defeat among arguments: a system of defeasible inference. Computational Intelligence,
2:100–106, 1987.

J. P. Martins. Belief revision. In Shapiro, S. C., editor, Encyclopedia of Artificial Intelligence, pages
110–116. John Wiley & Sons, New York, second edition, 1992.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Francisco, CA, 2nd edition, 1988.

J. Pearl and A. Paz. GRAPHOIDS: A graph-based logic for reasoning about relevance relations.
Technical Report 850038 (R-53-L), Cognitive Systems Laboratory, University of California,
1985.

J. L. Pollock. How to reason defeasibly. Artificial Intelligence, 57:1–42, 1992.

H. Prakken. Logical Tools for Modelling Legal Argument. A Study of Defeasible Reasoning in Law.
Kluwer Law and Philosophy Library, Dordrecht, 1997.

H. Prakken and G. Vreeswijk. Logics for Defeasible Argumentation, volume 4 of Handbook of
Philosophical Logic. Kluwer Academic Publishers, Dordrecht, 2 edition, 2002.

S. C. Shapiro. Belief revision and truth maintenance systems: An overview and a proposal. Tech-
nical Report CSE 98-10, Dept of Computer Science and Engineering, State University of New
York at Buffalo, 1998.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Adaptive Computation
and Machine Learning Series. MIT Press, 2nd edition, January 2000.

J. D. Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society,
Series B (Methodological), 64(3):479–498, 2002.

M. Studený. Conditional independence relations have no finite complete characterization. In Trans-
actions of the 11th Prague Conference on Information Theory, Statistical Decision Functions and
Random Processes, volume B, pages 377–396, 1991.

339

BROMBERG AND MARGARITIS

F. Toni and A. C. Kakas. In A. Nerode, editor, 3rd International Conference on Logic Programming
and Non-monotonic Reasoning, volume 928 of Lecture Notes in Artificial Intelligence, pages
401–415. Springer Verlag, 1995.

340

